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Abstract—In this paper we study the time evolution of the to localize while concurrently building a map of the environ-
position estimates’ covariance in Cooperative Simultaneous Lo- ment, in which case the uncertainty in their position estimates
calization and Mapping (C-SLAM), and obtain analytical upper  emaing hounded [4]. This introduces the problem of Coopera-
bounds for the positioning uncertainty. The derived bounds .. . L .
provide descriptions of the asymptotic positioning performance tive Simultaneous Local|zat!on And Mapping (C-SLAM) that
of a team of robots in a mapping task, as a function of the has recently attracted the interest of many researchers. The
characteristics of the proprioceptive and exteroceptive sensors of number of potential applications that require robots to perform
the robots, and of the graph of relative position measurements C-SLAM is continuously growing, as autonomous vehicles are
recorded by the robots. A study of the properties of the Riccali gmpioyed for tasks ranging from planetary exploration and
recursion which describes the propagation of uncertainty through . . . .
time, yields (i) the guaranteed accuracyfor a robot team in a enwronmental monitoring, to construction and transportation.
given C-SLAM application, as well as (i) the maximumexpected  In this work, C-SLAM is considered within th8tochastic
steady-state uncertainty of the robots and landmarks, when the Mappingframework [5], [6]. We assume that the mobile robots
spatial distribqtio_n of_features in the e_nvironment can be modeled move Continuous|y and rand0m|y in a p|anar environment,
by a known distribution. The theoretical results are validated by |\ hile recording measurements of the relative positions (i.e.,
simulation experlments. . . .

range and bearing) of other robots in the team, and of point
landmarks that exist in the environment. A means of describing
the exteroceptive measurements that are recorded at each

In order for a multirobot team to coordinate while navigatime step is the associateelative Position Measurement
ing autonomously within an area, all robots must be able Graph (RPMG), i.e., the graph whose vertices represent the
determine their positions with respect to a common frame mbots and landmarks, while its directed edges correspond to
reference. In an ideal scenario, each robot would have dir¢ieé robot-to-robot and robot-to-landmarkmeasurements (cf.
access to measurements of its absolute position, such as thkige 1(a)). We impose the constraint that the RPMG is a
provided by a GPS receiver, or those inferred by detectim@nnectedgraph, i.e., that there exists a path between any
previously mapped features. However, reliance on GPStigo of its nodes. This constraint arises naturally and is not
not feasible in a number of situations, since GPS signalsrestrictive one, since if an RPMG is not connected, then it
are not available everywhere (e.g., indoors), or, triangulati@an always be decomposed into smaller, connected sub-graphs.
techniques based on them may provide erroneous results &aeh of these sub-graphs corresponds to an isolated group of
to multiple reflections (e.g., in the vicinity of tall structuresobots and/or landmarks, whose position estimation problem
and buildings). Moreover, compiling a detailed map of thean be studied independently.
environment is a tedious and time-consuming process, whileThis paper presents the first derivation of analyticpper
numerous applications require robots to operate in unknowbundson the positioning uncertainty during C-SLAM for
surroundings, whose structure cannot be determined in adpossibly heterogeneous team of mobile robots navigating
vance. This suggests that additional means are required Vigthin a 2D environment populated with point features. The
aiding odometry when groups of mobile robots localize.  metric used to describe the localization uncertainty is the

In situations where absolute position information is natovariance matrix associated with the errors in the position
available, the robots of a team can still improve their locaéstimates for the robots and the mapped features. The closed-
ization accuracy, by recording robot-to-robot relative positiciorm expression of Lemma 4.3 establishié® guaranteed
measurements, and processing them in order to update tlaeicuracy attainable by a robot team in a given mapping
position estimates (e.g., [1], [2], [3]). This method results iapplication, as dunctional relationof the noise parameters
a substantial improvement in estimation accuracy, comparefdthe robots’ sensors and the topology of the RPMG. Fur-
to simple Dead-Reckoning localization schemes. Howevdrermore, the result of Lemma 4.5 demonstrates how prior
performing Cooperative Localization (CL) solely based omformation about the spatial density of landmarks can be
relative position measurements has the limitation that théilized in order to compute a tight upper bound on the
uncertainty of the robots’ position estimates continuousBxpectedcovariance of the positioning errors. To the best
increases, and the attained accuracy may not be sufficientdérour knowledge, the proposed bounds constitute the only
certain applications. An alternative approach is for the robaggistinganalytical toolsfor predicting the mapping precision,
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as well as the accuracy of the robots’ localization in a given ©nder the additional assumption that the robots receive noise-
SLAM application. Hence, they facilitate the selection of thiree odometry measurements, it is proven that at steady state,
required sensor parameters, in order to satisfy task-impossglof the vehicle and feature position estimates become fully
performance constraints. correlated andower bounddor the covariance of all vehicles
and features are derived. However, the propdeeer bounds
cannot be employed for determining the performance of C-
Most of the existing approaches to both single- and multsLAM in the case of robotsy motionexploring an unknown
robot SLAM have been inspired by the seminal papers afea. In such a scenario, the global coordinate frame can be
Moutarlier and Chatila [6] and of Smith, Self, and Cheesexrbitrarily defined, thus at least one of the robots has perfect
man [5], [7] that introduced the notion of tf&tochastic Map knowledge of its initial position, and the described lower
and emphasized the importance of properly accounting for theund reduces to zero.
correlations between all the robots’ and landmarks’ position The main contribution of the work presented in this paper is
estimates. However, maintaining all the cross-correlation elite characterization of the steady-state accuracy of the position
ments of the covariance matrix in EKF-based SLAM results istimates in C-SLAM. This is achieved by deriviagalytical
algorithms with computational complexity quadratic in the sizepper boundsfor the worst-case value as well as for the
of the state vector. Thus, the majority of subsequent reseamtpected value of the steady-state covariance matrix of the
on SLAM has focused on devising scalable algorithms, thpbsition estimates. What distinguishes these results from previ-
achieve performance comparable to that of an EKF-baseds ones is that the analysis is based oretttaal (non-linear)
approach to SLAM that accounts for the cross-correlati®ystem and measurement equations for robots navigating in
terms, at a smaller computational cost. 2D. Besides the naturally arising assumption of connectedness,
A number of estimation algorithms have been proposem additional assumptions on the structure of the RPMG
specifically for the C-SLAM problem, as alternatives to thare imposed. Furthermore, the analysis encompasses the case
EKF estimator [8]. In [9], a Set Membership (SM) techniquef a heterogeneous (in terms of sensor accuracy) group of
is developed based on the premise that all sensor errors @eots and is thus applicable to the study of a broad class of
bounded. This assumption allows for the definition of the sapplications.
of feasible state vectors, which is propagated through time
using Linear Programming and set approximation methods.
SM provides guaranteed uncertainty regions for all robotsConsider a group ofM mobile robots, denoted ag,
and landmarks at each time step. In the work of Thrun [10};, ..., ra;, moving on a planar surface, in an environment
an algorithm that integrates Maximum Likelihood (ML) in-that containsNV landmarks, denoted a6, Lo, ..., Ly. The
cremental map building with Monte Carlo localization igobots use proprioceptive measurements (e.g., from odometric
proposed. The pose of the robots is propagated usingoranertial sensors) to propagate their state (position) estimates,
particle filter representation of their belief functions, whiland are equipped with exteroceptive sensors (e.g., laser range
the map is compiled in a distributed manner among roboffders) that enable them to measure the relative position of
using laser range data. In [11], the constrained local submather robots and landmarks. All the measurements are fused
filter is employed, enabling each vehicle to build a map afsing an Extended Kalman Filter (EKF) in order to produce
its surroundings independently from the rest of the teamstimates of the position of the robots and the landmarks. In
In this case, a global map is created by periodically fusirmur formulation, it is assumed that an upper bound for the
the vehicles’ submaps. In [12], [13], an elevation map of arariance of the errors in the robots’ orientation estimates can
outdoor area is created using multiple robots that localibe determined a priori. This allows us to decouple the task
in a common coordinate frame. Finally, in [14] a manifol®f position estimation from that of orientation estimation and
representation of 2D space, and a ML estimator are employéatilitates the derivation of an analytical upper bound on the
This approach offers a method for alleviating the problem @hsitioning uncertainty.
map inconsistency in environments containing loops, at theThe robots’ orientation uncertainty is bounded when, for
expense of increased complexity. example, absolute orientation measurements from a compass
Our work does not address the aforementioned implemeor- sun sensor are available, or when the perpendicularity of
tation issues of C-SLAM. We assume perfect data associatite walls in an indoor environment is used to infer orientation.
and seek to characterize the theoretically attainable estimatlarcases where neither approach is possible, our analysis still
accuracy by providing bounds for the steady state covariarft@lds under the condition that a conservative upper bound
of the position estimates. To the best of our knowledge, tifier the orientation uncertainty of each robot is determined by
properties of the estimates’ covariance matrix in C-SLAM araternative means, e.g., by estimating the maximum orientation
only studied in the work of Fenwick et al. [4], [8]. Linear time-error accumulated, over a certain period of time, due to the
invariant models for both the propagation and measuremémtegration of noise in the odometric measurements [15]. It
equations are employed, and it is shown that the determinahbuld be noted that the requirement for bounded orientation
of any principal submatrix of the map’s covariance matrigrror covariance is not too restrictive: In the EKF framework,
decreases monotonically as successive observations are méme nonlinear state propagation and measurement equations
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are linearized around the estimates of the robots’ orientationFrom Eg. (3), we deduce that the covariance matrix of the
If the errors in these estimates are allowed to increase wystem noise affecting theth robot is:
bounded, the linearization will unavoidably become erroneous T T
and the estimates will diverge. Furthermore, large errors §fy: (¥) = E{Gr, (k)Wi(:)‘;Vvi (k)G (k) }
the estimates for the robots’ orientation in SLAM result in _ s ooy, 0 T/
erroneous data association, that may have detrimental effects Cleuk) 0 5t2V,,?” (k)Gii CHe®) @)
on the filter stability. Thus, in the vast majority of practical

situations, provisions are made in order to constrain the robofd1ereC(¢;) denotes the x 2 rotation matrix associated with

orientation uncertainty within given limits. ¢;.The landmarks are modeled as static points in 2D space,
In our formulation, the metric employed for describing th@nd therefore the state propagation equations are

accuracy of position estimation in C-SLAM is the covariance Xp,(k+1) = X1 (k), for i=1...N

matrix of the position estimates. It is well known that the time '

evolution of the covariance matrix in the EKF framework isimilarly, the estimates for the landmark positions are prop-

described by the prppagation and update gquations (qf. Eqs.a(gaated using the relation&y, i, = XLiklks for i =

and _(16)). Combining these equatlt_)ns _ylelds the R_lccatl re-.. N while the errors are propagated by, i, =

cursion (cf. Eq. (17)), whose solution is the covariance of . for i = 1...N. The state vector for the entire

the propagation phase of the EKF. In the case of C'SLA'\ﬂositions of theM robots andN landmarks, i.e.,
the matrix coefficients in this recursion are time-varying

and a general closed-form expression for the time evoluton X =[x ... XxI X[ ... X[
of the covariance matrix does not exist. We thus resort to . . ) .
deriving upper boundsfor the covariance, by exploiting the H€Nce: the state transition matrix for the entire system at time
convexity and monotonicity properties of the Riccati recursiofeP¥ 1S @k = lur+2n)x2M+2n) and the covariance matrix
(cf. Lemmas 4.1 and 4.4). These properties allow for tHfd the System noise is:

}T

formulation of constant coefficienRiccati recursions, whose Qr, (k) 0252

solutions provide upper bounds for the positioning uncertainty . ) . .

in C-SLAM. Qr) = : R : ADEN = GQ,(hGT
N _ O2x2 =+ Qry(R)

A. Position propagation Oon xoM 0on w2 N

The discrete-time kinematic equations for thth robot are whereQ, (k) — Diag (Q», (), with Diag(-) denoting a block

T (k1) = @y, (k) + Vi(k)3t cos(¢i(k)) (1) diagonal matrix, and
Yr(k+1) =y, (k) + Vi(k)0t sin(;(k)) ) G- [ oot }
whereV; (k) denotes the robot’s translational velocity at tilne 02 x 20

anddt is the sampling period. In the Kalman filter frameworkyhe equation for propagating the covariance matrix of the state
the estimates of the robot's position are propagated usi@gor is written as:

the measurements of the robot's velocity,,, (k), and the .
estimates of the robot's orientatiom; (k). By linearizing Pii1jk = Py + Q) = Py + GQ,(1)G ®)

Egs. (1) and (2), the error propagation equation for the robot’ ~ ST
position is derived: W%Effe Pippe = B{XeppXppt and Py =
~ ~ E{Xk‘kaT‘k} are the covariance of the error in the estimate
frmuk _ { 1o } fw‘k of X (k+1) and X (k) respectively, after measurements up to
Yripine 0 1 Yrip time k& have been processed.
[ ot COS(@(’“)) —Vin, (k)&sm(?;i(k)) ] [ wy; (k) } B. Measurement Model
ft sin(@i(k) Ymi(k)ét cos(¢i(k) 9ilk) At every time step, the robots perform robot-to-robot and
& Xoy L = D22 Xe, |+ Gr(Wilk), i=1...M (3) robot-to-landmark relative position measurements. The relative

. . . . position measurement between robgisandr,, is given by:
wheré wy;, (k) is a zero-mean white Gaussian noise sequence

of variances?, , affecting the velocity measurements amdr) Zrir = CT (i) (X, — Xp) 102, (6)
is the error in the robot’s orientation estimate at tilerhis

is modeled as a zero-mean white Gaussian noise sequencd¥§rer: (1) is the observing (observed) robot, and, .
varianceai is the noise affecting this measurement. Similarly, the mea-

surement of the relative position betweenand L,, is given
1Throughout this papef,. x» denotes then x n matrix of zeroslLmx, PY:
denotes then x n matrix of ones, and/,, x, denotes then x n identity

matrix. 2, = CT () (X1, — X)) + Nzt @)



The similarity of the preceding two measurement equatiopssition measurements recorded by this robot, and renders
allows us to treat both types of measurements in a unifotimeem correlated. As shown in [16], the additional covariance
manner. We denote bY;; the target of thej-th measurement term for each measurement is equal to:

performed by robot, i.e.,

T frvorees rape I oo I} i) Ry (k+1) = cﬂk¢0{Ap@?{?fiAp2chom)
Thus, the general form of the relative position measurement - UiiCT(¢i)JApijApijJTc(¢i) (11)
equation is: while the matrix of correlation between the errors in the

2 = CT(¢0) (X1, — X0.) + sy, (8) Measurements;;(k +1) andzie(k + 1) is:

= Ty E{n;k+1)ni,k+ 1)} k)
A~ ~T R
= 03,C"(0:)J Ap;Ap;i T C ()

Assuming that thei-th robot performs)M; relative position "Rje(k+1)
measurements, the indgxassumes integer values in the range

[1, M;] to describe these measurements. By linearizing the last
expression, the measurement error equation is obtained: Since thei-th robot performs); relative position measure-
ments at each time step, the covariance matrix of these
measurements?; (k + 1), is defined as a block matrix whose

¢m-th 2 x 2 submatrix iS'Ry,,(k+1), for {,m = 1...M;

12)

Zj(k+ 1) = Zij(k+ 1) — éij(k+ 1)
= Hyj(k+ 1))~(k+1|k + Tij(k + Dngj(k + 1)

where defined in Eqgs. (10)-(12). Substitution from these equations
R and simple algebraic manipulation yields
Hij(k+1) = CT(di(k +1)) Ho, ) .
H, = O2x2 —Iax2 Ioxo 0252 ] Ritk+1) = 83 Ro,(k + DEg, (13)
Oij — v ~
’ i Ti Tij whereEa;i = I, <, ®C(9;), with @ denoting the Kronecker
= = = T matrix product, and
Xip1je = | X7 XTT“U :|k+1\k

2

o
2 ; pi T
UpiI21V[i><2Mi — Di dlag ( A2l> Dz

j

Tij®) = | Iz —~C7(Sath + 1)TApy(k+1) |
+ 05, D;D] + 03 Dilys,xn, DI (14)

[ — 2 (k
J= ? 01 ] s Mig(k) = { nqgjli : e
- - R i(%) In this last expressionD; = Diag (JApij) is the block
Apyik+1) = X1; 0 = Xy diagonal matrix with diagonal elemenﬁs&})ij, j=1...M,.

The covariance of the error in this measurement is given by The measurement matrix describing the relative position
ip R N T T measurements performed by robiogt each time step is a
Rjjk+1) = Lijkt DE{ni;(k+ gk + I (k4 1) matrix whose block rows arél;;, j = 1...M;,, i.e..

= R,,(k+1)+ R(Z;ij (k+1) (10)

This expression encapsulates all sources of noise and uncer-
tainty that contribute to the measurement egg(x + 1). More  where H,, is aconstantmatrix with block rowsH,,, j =

specifically,2.,; (k + 1) is the covariance component attributed . .. A, (cf. Eq. (9)).

H;(k+1) = E] H,, (15)

to the measurement noise,; (k + 1), and Rd;w_ (k+1) is the

additional covariance term due to the erwfk +1) in the
orientation estimate of the measuring robot.

The measurement matrix for the entire systdii + 1),
is defined as the block matrix with block rowH ;(k + 1).
Since the measurements performed by different robots are

Assuming that each relative position measurement is coméependent, the associated covariance maRig + 1), is a
prised of a distance measurement and a bearing mea- block diagonal matrix with elemen®; (k + 1). The covariance
surements,;, affected by two independent white zero-meanpdate equation of the EKF is written as

Gaussian noise sequences, andng,, respectively, the term

R, (k+1) can be expressed as [16]:
R, (k+1) = B{n. (k+ )nl (k+1)}
2

~ g
=C" () | =5
(i) ( 72

ij

—_— —~T —~ T ~
Ap;jAp,; + 0, JApijApijJT> C(os)

where time indices have been dropped for simplicity. The vari-
ances of the noise in the distance and bearing measurements

Piijirr = P — PropH (0 + DST H(E + DP oy,

with S = H(k + 1)Pj1,H (k +1) + R(k + 1). Substitution
from Egs. (13) and (15) and simple algebraic manipulation
leads to the orientation-dependent terms being cancelled out,
and yields the expression

Piiiper = P — Prypp HIS, " HoPryye (16)

are denoted as?, = E{n2 } andoj = E{nj } respectively. with S, = H,P, 1 H! + R, (k+1). In these equationkl,
The error in the orientation estimate of the measuririg a matrix whose block rows ar#l ,, while R,, is a block
robot introduces an additional error component to all relatidagonal matrix with element®,, .



IV. SLAM POSITIONING ACCURACY CHARACTERIZATION An upper bound forR,(k + 1) can be derived by consid-

The time evolution of the covariance matrix of the positiot"?rlng the maximum distance,;, at wh|chhr.elat.|ve position
estimates in C-SLAM is described by the Riccati recursiomeasurements can be recorded by rabdthis distance can,

which can be derived by substituting the expression frofif €xample, be determined by the maximum range of the
Eq. (16) into Eq. (5). The resulting expression is: robots’ relative position sensors, or, by the size of the area to

. be mapped. It can be shown that [16]
Pi1 = P,—PH! (HPH! +R,(k+1) HPy

Ri(k+1) = (02 + M;o3 p2 + 05.p2) Ions, xanr, = Tilans, xon,
+ GQ.(k+1)GT (17) ( pi bi 0; ) X x

o and thus an upper bound a&,(k + 1) is computed as
where we use the substitutiod®, = P, and Py, =

P} 2541 to simplify the notation. We note that the matrices R, (k +1) < Diag (r;laa, x2m;) = Ry
Q.(k+1) and R,(k+1) in this Riccati recursion are time

varying, and thus a closed form expression Brcannot Having derived upper bounds 16, (k) and R, (k + 1), mere

be derived for the general case. However, by exploiting tﬁgbsptutlon in Eq. .(19) and _nume_ncal evaluation of the
olution to the resulting recursion, yields an upper bound on

monotonicity and concavity properties of the Riccati recursiofj, : . ; - !
the maximum possible uncertainty of the position estimates

we are able to derivapper boundgor the worst-case value, as. C-SLAM. at i instant after the deol * of th
well as for the average value of the covariance matrix at stedfy " » at any ime instant arter the deployment of the
ot team. However, for many applications it is important

state. At this point we note that in the ensuing derivations, th luate th ; ¢ SLAM at steadv state. |
initial covariance matrix of the position estimates is assumé%eva uate the periormance o at steady state, 1.€.,
when the covariance of the map has converged to a constant

to be equal to value ([4]). To this end, it is necessary to evaluate the solution

P, 0221 2N (18) to the recursion in Eq. (19) after sufficient time, i.e., as
O2nsxom Prr, k — oo. This computation is simplified by employing the
I(Ijowing Lemma, adapted from [17]:

Py =

i.e., we assume that the position estimates for the robots a]{ﬂ
the map features are initially uncorrelated, which is the case
at the onset of a mapping task within an unknown area.

u

Lemma 4.2:SupposePk,(0) is the solution to the discrete
time Riccati recursion in Eq. (19) with initial valuBy = 0.
A. Bound on Worst-Case Steady State Covariance Then the solution to the same Riccati recursion but with an

In this section, we derive an upper bound for the stea3§bltrary initial conditionP is given by the identity

state covariance matrix in C-SLAM. It can be shown that thpz
right-hand side of Eqg. (17) is a matrix-increasing function of o
the covariance matriceQ(k + 1) andR,(k + 1), as well as of where{ = 2M + 2N, and®(0,k + 1) is given by
the state covariance matriR;. These properties allow us to _ bl

prove the following lemma [16]: D0,k +1) = (Texe = KpHo)™™ (Texg + PIjta)

1= PZSSI) =®0,k+1) (Texe + PoJk_;,_l)_l Poq’T(O,k—l- 1)

In these expression®, is any solution to the Discrete Alge-
Lemma 4.1:1f R, and Q,, are matrices such th&., = praic Riccati Equation (DARE):
R, (k) and Q,, = Q.(k), for all £ > 0, then the solution to

the Riccati recursion P =P +GQ,,G" - PH (H,PH] + R,) 'H,P,
v, = PY-P'H! (HP/HT + Ru)’l H,PY andK, = PI_{OT (Ru + H?PHf)fl. J;, denotes the solution
n GQ”GT (19) to the dual Riccati recursion:

_ —1 T —1~T T —1
with the initial conditionPy = Py, satisfiesP} = P;, for all Jier1 =3 - IG(Q. '+ G"J,G)'G"J, + HIR, 'H,

k = 0. with zero initial condition,J, = 0.

In order to derive an upper bound fd®,(k), we note | emma 4.2 simplifies the evaluation of the steady-state value
that sinceC(¢;) is an orthonormal matrix, the eigenvaluegy pu since the solution to the Riccati recursion with zero
of Q. (k) are equal toit?cy, anddt*V3 (ko7 (cf. Eq. (4). initial condition is easily derived. We note that the Riccati
Assuming that the velocity of each robot is approximatelyscrsion in Eq. (19) describes the time evolution of the
constant and equal t%;, we denote covariance for a deduced C-SLAM scenario, in which both the
g; = max (&20‘2@&2‘/% (k)aii) ~ max (&20‘2&7&2%%%) robot_s’ ki_nemz_itic equati(_)n_s_ and the_ measurement equatio,ns

(20 are.t_|me |n\_/ar|ant. Zero initial covariance of the landmarks
fposition estimates, corresponds to a perfectly known map. In
this case the robots essentially perform cooperative localiza-
tion, while the robot-to-landmark measurements are equivalent
Qr; (k) =X qilax2 = Qr(k) X Diag (¢;I2x2) = Q,, (21) to absolute position measurements. Thus, the resulting system

This definition states that; is the largest eigenvalue o
Qr, (k+1), and therefore



is observable and the steady-state solution to the Ricctité area. However, when considering the type of features

equation is: of the environment to be treated as landmarks (e.g., visual
pu 0 features, prominent geometric features), it is beneficial to
PO — [ TToo IMX2N ] (22) select them so that they are abundant in the environment and
O2nxzm Oanxan evenly distributed throughout it. This way, a more detailed
with and accurate map of an area can be created. In such cases, the
1 1 1 density of landmarks in the environment can be modeled
P!, =Q)/*Udiag (2 Tyt N) u”qQ,)/? priori, for example, by a uniform probability density function

. o . (pdf). Knowledge of the distribution of the relative positions
In the last expression the quantitiésand A;, i = 1...2M  petween the robots and landmarks allows us to compute the
are defined as the matrix of eigenvectors and the eigenvalyggragevalue of the matrixR, (k + 1). This information can

1/2 1/2 .
of C = Q;/’1,Q;/” respectively, where be exploited in order to compute a tighter upper bound for the
S Tonsons expectedsteady state covariance of the position estimates.
I, = [lamxam Onxon] Hy R, "H, { 0N xans ] Specifically, it can be shown that the right hand side

of Eq. (17) is a concave function of the matricBs, and

Itis interesting to note thdd’ R, 'H,, represents the informa- R (x + 1). This property enables us to employ Jensen's
tion matrix associated with the measurements in the deduggéquality ([18]) to prove, by induction, the following

linear time-invariant system arid is the submatrix expressinglemma [16]:
the information about the robots’ positions.
The rest of the derivations for the upper bound on the steady emma 4.4:If R = E{R,(k)} andQ, = E{Q,(k)} then
state covariance matrix involve onIy algebraic manipulationme solution to the fo||owing Riccati recursion
and are not included here due to space limitations. The

— _ _ — . —1 —
interested reader is referred to [16] for the details of the Pr+1 = Pir—P.H (H,P:H] +R) H,P;
intermediate steps. The final result is stated in the following + GQ,GT (25)
lemma:

with initial condition P, = Py, satisfiesP, = E{P,} for

Lemma 4.3:The worst-case covariance matrix in C-SLAM""II k=0

is bounded above by the matrix . . .
The average value of the system noise covariance matrix is

Py = PYUO 4 Lvsn)x(m+n) © O (23) easily computed by averaging over all values of orientation of
w(0) ; ) ) the robots:
wherePs ™ is defined in Eq. (22) and 58202 + 6t2Vfaé )
© = (Lixn ®lax2) Prp, (Inx1 ® I2x2) EAQr} = 3 a2 = Gilaxa (26)
+  (Lixm ® Iaxo) (3,1 + Pm))_1 (Lax1 ® Loyo)  @ndthus
with Q. = E{Q,(k+1)} = Diag (Gil2x2) (27)

e 1. \; 2 1) In order to evaluate the expected value Bf, (k +1), we
Iy = Q;/*U diag 5 Ty tAM|U Q,.'”* (24) assume a uniform distribution for the positions of the robots
and landmarks in a rectangular area of sideUsing the

definition of R, (k in Eqg. (14), it can be shown that [16
Note that the first term in Eq. (23) depends only on the e (k+ 1) in Eq. ( )2I ) W [16]
(0%

. 2

RPMG and the accuracy of the robots’ sensors, while theR —EIR. \— < 2 2 & 2 >

S . i = it =05 — +0yg—+0, — | lan, .

second term encapsulates the effect of the initial uncertainty. {Ro.} ) b: ¢i A2y
A case of particular interest in C-SLAM is that of a robot o?

team building a map of an area for which no prior knowledge + J¢iﬁl2Mi><2Mi

exIsts. Weh_mr(])d(?I l;[jhlsthsufanl?rlo_ by S.ett'ﬁg'éo = nl, \.N'thf and thusR = E{R,} = Diag(R;). At this point, we note
pr — oo, which yields he following Simpliied expression fof,4; the uniform distribution employed in the calculation of

matrix ©: R, was deemed an appropriate model for the positions of the
O = (Lixm ® Ioxo) (1 + Pm))_l (Larx1 @ Ioxo) robots and landmarks in the simulation experiments presented

) in Section V. However, the analysis holds for any pdf. If a
B. Bound on the average steady state covariance different pdf is used, the value @ will not, in general, be

The expression in Eq. (23) provides an upper bound given by the preceding expression.
the covariance matrix of C-SLAM for a robot team with The upper bound for the expected steady-state covariance
a given set of sensors and a known RPMG. This bouman be computed by evaluating the solution to the recursion in
holds under any possible configuration of the landmarks Eq. (25) after sufficient time. The derivation process followed
space, and regardless of the trajectories of the robots witliénanalogous to the one presented in the previous section. The



only difference is that matriceR andQ,., instead ofR,, and exteroceptive measurements provide only a small amount of
Q. respectively, are used. The final result is synopsized positioning information during the crucial first few updates. In
the following lemma: Fig. 1(c), the time evolution of the covariance of the position
estimates for the robots and landmarks is shown and compared
Lemma 4.5:The expectedsteady-state covariance of theo the theoretically-derived steady-state performance bound.
position estimates in C-SLAM, when the spatial density dflearly, the upper bound is indeed larger than the steady-
landmarks is described by a known pdf, is bounded above &iate covariance of the landmarks and robots. It is also worth
the matrix noting that the covariance of the position estimates converges
_ to the samevalue for all landmarks, while the accuracy of
} + LNy x (M4N) @ Chs the position estimates varies between robots. These differences
result from the non-symmetric topology of the RPMG, which

P _ P,  Oomxen
oo
Oonxom  Oanxan

with _ I 1 T 1\ crai causes each robot to have access to positioning information of
P, =Q,/“Udiag <2 tyzt 5\-> U Q. different quality.
and ‘ Although the bound of Lemma 4.3 accounts for the worst-
= _ case accuracy of C-SLAM, it does not yield a sufficient per-
6 = (11><N®I2><2)PL£D (1N><1 ®12><2) y y P

formance description when the map features are more evenly
+ (Lixm ® Ioxo) (3,0 + Pm))f1 (Layrx1 ® Iox2)  distributed in space. In such cases, employing Lemma 4.5 re-
sults in a tighter bound on the average positioning uncertainty,
as demonstrated in Fig. 2. In this plot, the average values (over
-  A—1/2r 4 i Moo\ s 12 50 runs) of the covariance in C-SLAM, are compared against
Jrree = Q. /" U diag 5TV T A UTQ, (28)  the theoretically derived bounds on the expected uncertainty.
For each run of the algorithm, the locations of the landmarks,

where U and \;, i = 1...2M are defined based on theas well as the initial positions for the robots, were selected

The quantityJ,,  appearing in this last expression is:

singular value decomposition of the matfix using samples from a uniform distribution. Note that the scale
~ ~ Tontxont of the axes in Fig. 2 has been changed compared to Fig. 1(c),
I, = [laxon Oonxon] HIRT'H, [ O2NX2M } in order to preserve clarity. Mere comparison of the values
X

- for the covariance of the robots’ and landmarks’ position
= Udlag(Ai)U S estimates with the corresponding bounds demonstrates that
In the special case where the map is initially unknown, matri¥hen available information about the distribution of the land-
© assumes the value marks is exploited, i.e., by employing the expressions from
O = (Lixm ® Lox2) (J;,1 + prm)*l (Larx1 ® Ioxo) Lemma 4.53 a bett_er chargcteri;ation of the expected accuracy
of the position estimates is achieved.
V. SIMULATION RESULTS

A series of experiments in simulation were conducted,
in order to validate the preceding theoretical analysis. Theln this paper, we have presented a method for predicting
simulated robots move in an arena of dimensidfs< 10m, the positioning performance of C-SLAM, without the need to
within which point landmarks are located. The velocity ofesort to extensive simulations or experimentation. The derived
the robots is kept constant & = 0.25m/s, while their expressions enable us to determigearanteed steady-state
orientation changes randomly, using samples drawn fromaacuracyvalues for a robot team with a given set of sensors,
uniform distribution. To simplify the presentation, a homogemapping an area of known size (cf. Lemma 4.3). Moreover,
neous robot team is assumed. The standard deviation of thigen a model of the distribution of the landmarks in the area
velocity measurement noise is equaldp = 0.05V and the is available, application of Lemma 4.5 yields a tight upper
standard deviation of the errors in the orientation estimateshisund for theexpectedvalue of the steady-state covariance
equal tooy = 2°, for all robots. Similarly, the values selectedf the position estimates of the robots and landmarks. The
for the standard deviations of the exteroceptive measuremeafisrementioned Lemmas providenctional relationsfor the
of the robots aresy = 2°, for the bearing measurementspositioning accuracy in terms of the number of landmarks, the
ando, = 0.05m, for the range measurements. For the resultize of the robot team, the accuracy of the robots’ sensors, and
presented in this section, the RPMG shown in Fig. 1(a) is usdke topology of the RPMG. Thus, they facilitate thediction
It is assumed that initially the robots have perfect knowledgs the performance of a robot team in a mapping application.
of their positions, while the landmark positions are unknowiCertainly, the most restrictive assumption employed in the

In order to demonstrate the validity of the bound on theurrent work is that the topology of the RPMG does not
worst-case covariance of C-SLAM, provided in Lemma 4.&hange, which implies that certain pairs of robots or robots
a particularly adverse scenario for the placement of the larehd landmarks maintain line-of-sight contact at all times.
marks is considered. Specifically, all the landmarks form Athough this is not possible in many real-world applications,
cluster at one corner of the arena, while the robots begin th#hie presented analysis can serve as a basis for extensions to
exploration at the opposite corner (Fig. 1(b)). In this case tleases where the topology of the RPMG changes dynamically.

VI. CONCLUSIONS
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(a) The RPMG used for the simulation experiments (b) The initial positions and part of the trajectories of the robots for an adverse C-SLAM
scenario. (c) Comparison of the actual covariance of the position estimates against the worst-case performance bound, for the scenario in (b). The plotted

lines correspond to the mean of the covariance along the two coordinate axes.
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against the corresponding upper bound. Landmark positions and the initial
robot positions are selected using samples from a uniform distribution.

Averages over 50 runs of C-SLAM are computed.
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