Estimasi Kedalaman Perairan Dangkal Menggunakan Citra Satelit Multispektral Sentinel-2A

Arip Rahman, Vincentius P. Siregar, James P. Panjaitan

Abstract

Estimasi kedalaman perairan dangkal menggunakan data penginderaan jauh menjadi salah satu alternatif pengukuran kedalaman yang terkendala masalah teknis dan logistik. Ekstraksi kedalaman menggunakan citra Sentinel-2A dilakukan di sekitar perairan Pulau Kemujan Taman Nasional Perairan Karimunjawa Jawa Tengah. Sebanyak 2134 data (1280 data training dan 854 data test) hasil pemeruman digunakan pada saat analisis. Dark Object Substraction (DOS) digunakan pada proses awal pengolahan citra Sentinel 2A untuk menghasilkan citra yang terkoreksi atmosferik. Metode algoritma yang digunakan untuk mengestimasi kedalaman antara lain: linear transform, ratio transform dan support vector machine (SVM). Hasil korelasi antara data prediksi kedalaman dan hasil pemeruman tertinggi dihasilkan dari metode algoritma SVM dengan koefisien determinasi (R2)  0,71 (data training) dan 0,56 (data test). Hasil penilaian akurasi menggunakan nilai Root Mean Square Error (RMSE) dan Mean Absolute Error (MAE), metode algoritma SVM memiliki nilai penyimpangan terkecil (< 1 m). Hal tersebut mengindikasikan bahwa metode algoritma SVM memiliki tingkat akurasi yang lebih tinggi dibandingkan dengan kedua metode lainnya.

Keywords

penginderaan jauh, perairan dangkal, batimetri, liner transform, ratio transform, svm, karimunjawa

Full Text:

PDF

References

Bagheri, S., Stein, M., & Dios, R. (1998). Utility of hyperspectral data for bathymetric mapping in a turbid estuary. International Journal of Remote Sensing, 19(6), 1179–1188. https://doi.org/10.1080/014311698215676

Brown, C. J., Sameoto, J. A., & Smith, S. J. (2012). Multiple methods, maps, and management applications: Purpose made seafloor maps in support of ocean management. Journal of Sea Research. https://doi.org/10.1016/j.seares.2012.04.009

Chust, G., Grande, M., Galparsoro, I., Uriarte, A., & Borja, Á. (2010). Capabilities of the bathymetric Hawk Eye LiDAR for coastal habitat mapping: A case study within a Basque estuary. Estuarine, Coastal and Shelf Science, 89(3), 200–213. https://doi.org/10.1016/j.ecss.2010.07.002

Densham, M. (2005). “Bathymetric Mapping with Quickbird Data.” PhD diss. Naval Postgraduated School.

Dixon, T. H., Naraghi, M., McNutt, M. K., & Smith, S. M. (1983). Bathymetric Prediction From SEASAT Altimeter Data by poorly atmospheric • Now at Department of Earth Science , Massachusetts. Journal of Geophysical Research, 88, 1563–1571.

Doxani, G., Papadopoulou, M., Lafazani, P., Pikridas, C., & Tsakiri-Strati, M. (2012). Shallow-Water Bathymetry Over Variable Bottom Types Using Multispectral Worldview-2 Image. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B8(September), 159–164. https://doi.org/10.5194/isprsarchives-xxxix-b8-159-2012

Eugenio, F., Marcello, J., & Martin, J. (2015). High-Resolution Maps of Bathymetry and Benthic Habitats in Shallow-Water Environments Using Multispectral Remote Sensing Imagery. IEEE Transactions on Geoscience and Remote Sensing, 53(7). https://doi.org/10.1109/TGRS.2014.2377300

Gao, J. (2009). Bathymetric mapping by means of remote sensing: Methods, accuracy and limitations. Progress in Physical Geography, 33(1), 103–116. https://doi.org/10.1177/0309133309105657

Girosi, F., & Poggio, T. (1990). Networks and the best approximation property. Biological Cybernetics, 63(3), 169–176. https://doi.org/10.1007/BF00195855

Hedley, J. D., Roelfsema, C., Brando, V., Giardino, C., Kutser, T., Phinn, S., … Koetz, B. (2018). Coral reef applications of Sentinel-2: Coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8. Remote Sensing of Environment, 216, 598–614. https://doi.org/10.1016/j.rse.2018.07.014

Jerlov, N. G. (1976). Marine Optics. Elsevier.

Kabiri, K., Rezai, H., Moradi, M., & Pourjomeh, F. (2014). Coral reefs mapping using parasailing aerial photography- feasibility study: Kish Island, Persian Gulf. Journal of Coastal Conservation, 18(6), 691–699. https://doi.org/10.1007/s11852-014-0345-9

Lafon, V., Froidefond, J. M., Lahet, F., & Castaing, P. (2002). SPOT shallow water bathymetry of a moderately turbid tidal inlet based on field measurements. Remote Sensing of Environment, 81(1), 136–148. https://doi.org/10.1016/S0034-4257(01)00340-6

Leon, J. X., & Cohen, T. J. (2012). An improved bathymetric model for the modern and palaeo Lake Eyre. Geomorphology, 173–174, 69–79. https://doi.org/10.1016/j.geomorph.2012.05.029

Lyzenga, D. R. (1978). Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics, 17(3), 379. https://doi.org/10.1364/ao.17.000379

Lyzenga, D. R. (1985). International Journal of Remote Sensing Shallow-water bathymetry using combined lidar and passive multispectral scanner data. International Journal of Remote Sensing, 6(1), 115–125.

McIntyre, M. L., Naar, D. F., Carder, K. L., Donahue, B. T., & Mallinson, D. J. (2006). Coastal Bathymetry from Hyperspectral Remote Sensing Data: Comparisons with High Resolution Multibeam Bathymetry. Marine Geophysical Researches, 27(2), 129–136. https://doi.org/10.1007/s11001-005-0266-y

Misra, A., Vojinovic, Z., Ramakrishnan, B., Luijendijk, A., & Ranasinghe, R. (2018). Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery. International Journal of Remote Sensing, 39(13). https://doi.org/10.1080/01431161.2017.1421796

Monteys, X., Harris, P., Caloca, S., & Cahalane, C. (2015). Spatial prediction of coastal bathymetry based on multispectral satellite imagery and multibeam data. Remote Sensing, 7(10), 13782–13806. https://doi.org/10.3390/rs71013782

Philpot, W. D. (1989). Bathymetric mapping with passive multispectral imagery. Applied Optics, 28(8), 1569. https://doi.org/10.1364/AO.28.001569

Pope, A., Scambos, T. A., Moussavi, M., Tedesco, M., Willis, M., Shean, D., & Grigsby, S. (2016). Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods. Cryosphere, 10(1), 15–27. https://doi.org/10.5194/tc-10-15-2016

Sánchez-Carnero, N., Ojeda-Zujar, J., Rodríguez-Pérez, D., & Marquez-Perez, J. (2014). Assessment of different models for bathymetry calculation using SPOT multispectral images in a high-turbidity area: The mouth of the Guadiana Estuary. International Journal of Remote Sensing, 35(2), 493–514. https://doi.org/10.1080/01431161.2013.871402

Stumpf, R. P., Holderied, K., Spring, S., & Sinclair, M. (2003). Determination of water depth with high-resolution satellite imagery over variable bottom types, 48, 547–556.

Su, H., Liu, H., & Heyman, W. (2008). Automated derivation of bathymetric information from multi-spectral satellite imagery using a non-linear inversion model. In Marine Geodesy (Vol. 31, pp. 281–298). https://doi.org/10.1080/01490410802466652

Vapnik, V. N. (1998). Statistical Learning Theory (Vol. 3). New York: Wiley.

Vinayaraj, P., Raghavan, V., & Masumoto, S. (2016). Satellite-Derived Bathymetry using Adaptive Geographically Weighted Regression Model. Marine Geodesy, 39(6), 458–478. https://doi.org/10.1080/01490419.2016.1245227

Vojinovic, Z., Abebe, Y. A., Ranasinghe, R., Vacher, A., Martens, P., Mandl, D. J., … De Zeeuw, R. (2013). A machine learning approach for estimation of shallow water depths from optical satellite images and sonar measurements. Journal of Hydroinformatics, 15(4), 1408–1424. https://doi.org/10.2166/hydro.2013.234