Skip to main content
Log in

Reactive sputtering deposition and characterization of Ta-N thin films

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Tantalum nitride (Ta-N) films were deposited by reactive sputtering of tantalum in a nitrogen/argon gas mixture at three different gas ratios and two different substrate temperatures. SEM, EDS, XRD, and optical spectrophotometry measurements were used to assess this deposition technique as part of ongoing and future work on the fabrication and characterization of Ta-N-containing ternary alloy films and device structures. The results showed that increasing the substrate temperature and the N-fraction in the sputtering gas mixture led to finer grain morphology and denser film structure. The films were found to be amorphous with no substrate heating. For substrate temperature of 300 °C, the films were amorphous for N-fraction of 0.5 and crystalline for N-fraction of 0.17 or 0.83. The optical bandgap values obtained from spectrophotometry measurements showed a substantial variation with substrate temperature and nitrogen gas fraction from 1.62 to 2.1 eV.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. W. Dai, Y. Shi, Coatings 11, 911 (2021)

    Article  CAS  Google Scholar 

  2. I.-S. Kim, M.-Y. Cho, D.-W. Lee, P.-J. Ko, W.H. Shin, C. Park, J.-M. Oh, Thin Solid Films 697, 137821 (2020)

    Article  CAS  Google Scholar 

  3. D. Cherfi, M. Guemmaz, M. Bourahli, M. Ouadfel, S. Maabed, Acta Phys. Pol. A 136, 849–854 (2019)

    Article  CAS  Google Scholar 

  4. M. Hantehzadeh, S. Mortazavi, S. Faryadras, M. Ghoranneviss, J. Fusion Energy 31, 84 (2012)

    Article  CAS  Google Scholar 

  5. A.K. Kapoor, M. Thomas, J. Ciacchella, M. Hartnett, IEEE Trans. Electron. Devices 35, 1372 (1988)

    Article  CAS  Google Scholar 

  6. Y.-C. Wang, C.-Y. Chang, T.-F. Yeh, Y.-L. Lee, H. Teng, J. Mater. Chem. A 2, 20570 (2014)

    Article  CAS  Google Scholar 

  7. A. Zaman, E.I. Meletis, Coatings 7, 209 (2017)

    Article  Google Scholar 

  8. Y. Seo, S. Lee, S.-H.C. Baek, W.S. Hwang, H.-Y. Yu, S.-H. Lee, B.J. Cho, IEEE Electron. Device Lett. 36, 997 (2015)

    Article  CAS  Google Scholar 

  9. M. Yang, A. Zakutayev, J. Vidal, X. Zhang, D.S. Ginley, F.J. DiSalvo, Energy Environ. Sci. 6, 2994 (2013)

    Article  CAS  Google Scholar 

  10. N. Szymanski, L. Walters, O. Hellman, D. Gall, S. Khare, J. Mater. Chem. A 6, 20852 (2018)

    Article  CAS  Google Scholar 

  11. A. Scandurra et al., Surf. Interface Anal. 40, 758 (2008)

    Article  CAS  Google Scholar 

  12. M. Cheviot, M. Gouné, A. Poulon-Quintin, Surf. Coat. Technol. 284, 192 (2015)

    Article  CAS  Google Scholar 

  13. K. Babaei, A. Fattah-alhosseini, H. Elmkhah, H. Ghomi, Surf. Interfaces 21, 100685 (2020)

    Article  CAS  Google Scholar 

  14. J. Nazon, J. Sarradin, V. Flaud, J.-C. Tedenac, N. Fréty, J. Alloy. Compd. 464, 526 (2008)

    Article  CAS  Google Scholar 

  15. N. Arshi, J. Lu, Y.K. Joo, J.H. Yoon, B.H. Koo, Surf. Interface Anal. 47, 154 (2015)

    Article  CAS  Google Scholar 

  16. W.-H. Lee, J.-C. Lin, C. Lee, Mater. Chem. Phys. 68, 266 (2001)

    Article  CAS  Google Scholar 

  17. J.A. Thornton, J. Vac. Sci. Technol. A Vac. Surf. Films 4, 3059 (1986)

    Article  CAS  Google Scholar 

  18. I. Petrov, P. Barna, L. Hultman, J. Greene, J. Vac. Sci. Technol. A Vac. Surf. Films 21, S117 (2003)

    Article  CAS  Google Scholar 

  19. T. Riekkinen, J. Molarius, T. Laurila, A. Nurmela, I. Suni, J. Kivilahti, Microelectron. Eng. 64, 289 (2002)

    Article  CAS  Google Scholar 

  20. H. Nie, S. Xu, S. Wang, L. You, Z. Yang, C. Ong, J. Li, T. Liew, Appl. Phys. A 73, 229 (2001)

    Article  CAS  Google Scholar 

  21. S. Firouzabadi, M. Naderi, K. Dehghani, F. Mahboubi, J. Alloy. Compd. 719, 63 (2017)

    Article  CAS  Google Scholar 

  22. J.C. Lin, G. Chen, C. Lee, J. Electrochem. Soc. 146, 1835 (1999)

    Article  CAS  Google Scholar 

  23. H. Huggins, M. Gurvitch, J. Vac. Sci. Technol. A Vac. Surf. Films 1, 77 (1983)

    Article  CAS  Google Scholar 

  24. K. Valdez, D. Espinosa-Arbeláez, J. García-Herrera, J. Muñoz-Saldaña, M. Farias, W. De la Cruz, Surf. Interface Anal. 47, 1015 (2015)

    Article  CAS  Google Scholar 

  25. J.A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974)

    Article  CAS  Google Scholar 

  26. L. Liu, K. Huang, J. Hou, H. Zhu, Mater. Res. Bull. 47, 1630 (2012)

  27. N. Terao, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences Serie B. v285, 17 (1977)

  28. Z. Wang, J. Wang, J. Hou, K. Huang, S. Jiao, H. Zhu, Mater. Res. Bull. 47, 3605 (2012)

    Article  CAS  Google Scholar 

  29. R. Fix, R.G. Gordon, D.M. Hoffman, Chem. Mater. 5, 614 (1993)

    Article  CAS  Google Scholar 

  30. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi (B) 15, 627 (1966)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Maidul Islam.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M., Georgiev, D.G. Reactive sputtering deposition and characterization of Ta-N thin films. MRS Advances 7, 523–527 (2022). https://doi.org/10.1557/s43580-022-00288-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00288-1

Navigation