Skip to main content
Log in

Nano-indentation modulus and hardness of β-Ti and γ-TiAl phases in Ti–Al–Cr system

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Mechanical properties of TiAl base alloys strongly depend on the microstructure. To understand the effect of microstructures on the properties, it is essential to evaluate the properties of constituent phases. In this study, the Young’s modulus and hardness of β-Ti and γ-TiAl phases were measured using nano-indentation method in Ti–Al–Cr ternary system, and their Cr content dependence was examined. In Ti–44Al–4Cr alloy equilibrated at 1373 K, β phase, indented from 001 direction, shows the Young’s modulus of 140 GPa and the hardness of 6.8 GPa. In contrast, γ phase, indented from 001 direction, shows the Young’s modulus of 154 GPa and the hardness of 3.1 GPa. The Young’s modulus of β phase increases with Cr content and the hardness does not depend on Cr content. On the other hand, either the Young’s modulus or hardness of γ phase does not change much with Cr content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y.W. Kim, D.M. Dimiduk, JOM 43, 40 (1991). https://doi.org/10.1007/BF03221103

    Article  CAS  Google Scholar 

  2. T. Tetsui, K. Shindo, S. Kobayashi, M. Takeyama, Scr. Mater. 47, 399 (2002). https://doi.org/10.1016/S1359-6462(02)00158-6

    Article  CAS  Google Scholar 

  3. M. Takeyama, S. Kobayashi, Intermetallics 13, 993 (2005). https://doi.org/10.1016/j.intermet.2004.12.014

    Article  CAS  Google Scholar 

  4. H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto, A. Bartels, Adv. Eng. Mater. 10, 707 (2008). https://doi.org/10.1002/adem.200800164

    Article  CAS  Google Scholar 

  5. L.J. Signori, T. Nakamura, Y. Okada, R. Yamagata, H. Nakashima, M. Takeyama, Intermetallics 100, 77 (2018). https://doi.org/10.1016/j.intermet.2018.04.024

    Article  CAS  Google Scholar 

  6. H. Wakabayashi, L.J. Signori, A. Shaaban, R. Yamagata, H. Nakashima, M. Takeyama, MRS Adv. 4, 1465 (2019). https://doi.org/10.1557/adv.2019.113

    Article  CAS  Google Scholar 

  7. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992). https://doi.org/10.1557/JMR.1992.1564

    Article  CAS  Google Scholar 

  8. Y.W. Kim, JOM 41, 24 (1989). https://doi.org/10.1007/BF03220267

    Article  CAS  Google Scholar 

  9. N. Cui, Q. Wu, Z. Yan, H. Zhou, X. Wang, Materials 12, 2757 (2019). https://doi.org/10.3390/ma12172757

    Article  CAS  Google Scholar 

  10. A. Shaaban, H. Wakabayashi, H. Nakashima, M. Takeyama, MRS Adv. 4, 1471 (2019). https://doi.org/10.1557/adv.2019.111

    Article  CAS  Google Scholar 

  11. P. Wang, M. Todai, T. Nakano, J. Alloys Compd. 782, 667 (2019). https://doi.org/10.1016/j.jallcom.2018.12.236

    Article  CAS  Google Scholar 

  12. Y.H.R.B. Schwarz, A. Migliori, S.H. Whang, J. Mater. Res. 10, 1187 (1995). https://doi.org/10.1557/JMR.1995.1187

    Article  Google Scholar 

  13. Y. He, R. Schwarz, T. Darling, M. Hundley, S. Whang, Z. Wang, Mater. Sci. Eng. A. 239–240, 157 (1997). https://doi.org/10.1016/S0921-5093(97)00575-3

    Article  Google Scholar 

  14. M. Morinaga, J. Saito, N. Yukawa, H. Adachi, Acta Metall. Mater. 38, 25 (1990). https://doi.org/10.1016/0956-7151(90)90131-Y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Material Integration” for revolutionary design system of structural materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yotaro Okada.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okada, Y., Taniguchi, S., Yamagata, R. et al. Nano-indentation modulus and hardness of β-Ti and γ-TiAl phases in Ti–Al–Cr system. MRS Advances 6, 183–186 (2021). https://doi.org/10.1557/s43580-021-00046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00046-9

Navigation