Skip to main content
Log in

Ultra-low-power neurotransmitter sensor using novel “click” chemistry aptamer-functionalized deep subthreshold Schottky barrier IGZO TFT

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This report implements for the first time an alkyne-azide “click” chemistry to position dopamine-specific aptamer receptors on InGaZnO (IGZO) thin film transistor (TFT) surfaces for sensitive and selective detection of dopamine. It incorporates catalytic attachment of an alkyne-terminated silane to an azide-anchored aptamer that precludes the need of an intermediate molecular cross-linking bond. The TFTs demonstrate high-gain (~ 1000) Schottky action in deep subthreshold regime achieved through high-quality metal–semiconductor contact engineering which enables almost unity voltage operation. The aptamer is specifically synthesized for selectivity towards dopamine and volt-order-calibrated responses with empirical and theoretical detection limits of 1 nM and 100 pM are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Data availability

All data are contained in the primary text.

References

  1. S.J. Park, H.S. Song, O.S. Kwon, J.H. Chung, S.H. Lee, J.H. An, S.R. Ahn, J.E. Lee, H. Yoon, T.H. Park, J. Jang, Human dopamine receptor nanovesicles for gate-potential modulators in high-performance field-effect transistor biosensors. Sci. Rep. 4, 4342 (2014)

    Article  Google Scholar 

  2. T. Sakata, Biologically coupled gate field-effect transistors meet in vitro diagnostics. ACS Omega 4, 11852 (2019)

    Article  CAS  Google Scholar 

  3. P.-C. Chen, Y.-W. Chen, I. Sarangadharan, C.-P. Hsu, C.-C. Chen, S.-C. Shiesh, G.-B. Lee, Y.-L. Wang, Editors’ choice—field-effect transistor-based biosensors and a portable device for personal healthcare. ECS J. Solid State Sci. Technol. 6, Q71 (2017)

    Article  CAS  Google Scholar 

  4. I. Sarangadharan, A. Regmi, Y.-W. Chen, C.-P. Hsu, P. Chen, W.-H. Chang, G.-Y. Lee, J.-I. Chyi, S.-C. Shiesh, G.-B. Lee, Y.-L. Wang, High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN high electron mobility transistor (HEMT) biosensors. Biosens. Bioelectron. 100, 282 (2018).

  5. N. Aliakbarinodehi, P. Jolly, N. Bhalla, A. Miodek, G. De Micheli, P. Estrela, S. Carrara, Aptamer-based field-effect biosensor for Tenofovir detection. Sci. Rep. 7, 44409 (2017)

    Article  CAS  Google Scholar 

  6. A. Barua, T. H. Nguyen, Y. Wu, V. M. Jain, R. J. White, and R. Jha: in NAECON 2018—IEEE Natl. Aerosp. Electron. Conf. (IEEE, 2018), pp. 331–338.

  7. N. Nakatsuka, K. A. Yang, J. M. Abendroth, K. M. Cheung, X. Xu, H. Yang, C. Zhao, B. Zhu, Y. S. Rim, Y. Yang, P. S. Weiss, M. N. Stojanović, and A. M. Andrews: Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362, 319 (2018).

  8. J.D. Berke, What does dopamine mean?Nat. Neurosci. 21, 787 (2018)

    Article  CAS  Google Scholar 

  9. H. Tang, P. Lin, H.L.W. Chan, F. Yan, Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosens. Bioelectron. 26, 4559 (2011)

    Article  CAS  Google Scholar 

  10. T.R. Slaney, O.S. Mabrouk, K.A. Porter-Stransky, B.J. Aragona, R.T. Kennedy, Chemical gradients within brain extracellular space measured using low flow push-pull perfusion sampling in vivo. ACS Chem. Neurosci. 4, 321 (2013)

    Article  CAS  Google Scholar 

  11. S.M. Matt, P.J. Gaskill, Where is dopamine and how do immune cells see it?: Dopamine-mediated immune cell function in health and disease. J. Neuroimmune Pharmacol. 15, 114 (2020)

    Article  CAS  Google Scholar 

  12. A. Suresh, J.F. Muth, Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors. Appl. Phys. Lett. 92, 033502 (2008)

    Article  Google Scholar 

  13. J.-S. Park, J.K. Jeong, Y.-G. Mo, H.D. Kim, S.-I. Kim, Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment. Appl. Phys. Lett. 90, 262106 (2007)

    Article  Google Scholar 

  14. R.L. Hoffman, B.J. Norris, J.F. Wager, ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82, 733 (2003)

    Article  CAS  Google Scholar 

  15. J.F. Wager, B. Yeh, R.L. Hoffman, D.A. Keszler, An amorphous oxide semiconductor thin-film transistor route to oxide electronics. Curr. Opin. Solid State Mater. Sci. 18, 53 (2014)

    Article  CAS  Google Scholar 

  16. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488 (2004)

    Article  CAS  Google Scholar 

  17. Y.-C. Shen, C.-H. Yang, S.-W. Chen, S.-H. Wu, T.-L. Yang, J.-J. Huang, IGZO thin film transistor biosensors functionalized with ZnO nanorods and antibodies. Biosens. Bioelectron. 54, 306 (2014)

    Article  CAS  Google Scholar 

  18. T.-H. Yang, T.-Y. Chen, N.-T. Wu, Y.-T. Chen, J.-J. Huang, IGZO-TFT Biosensors for Epstein-Barr virus protein detection. IEEE Trans. Electron Devices 64, 1294 (2017)

    Article  Google Scholar 

  19. Y.-W. Wang, T.-Y. Chen, T.-H. Yang, C.-C. Chang, T.-L. Yang, Y.-H. Lo, J.-J. Huang, Thin-film transistor-based biosensors for determining stoichiometry of biochemical reactions. PLoS ONE 11, e0169094 (2016)

    Article  Google Scholar 

  20. J.T. Smith, S.S. Shah, M. Goryll, J.R. Stowell, D.R. Allee, Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer. IEEE Sens. J. 14, 937 (2014)

    Article  CAS  Google Scholar 

  21. Y.S. Rim, S.-H. Bae, H. Chen, J.L. Yang, J. Kim, A.M. Andrews, P.S. Weiss, Y. Yang, H.-R. Tseng, Printable ultrathin metal oxide semiconductor-based conformal biosensors. ACS Nano 9, 12174 (2015)

    Article  CAS  Google Scholar 

  22. J. Zhang, J. Wilson, G. Auton, Y. Wang, M. Xu, Q. Xin, A. Song, Extremely high-gain source-gated transistors. Proc. Natl. Acad. Sci. 116, 4843 (2019)

    Article  CAS  Google Scholar 

  23. S. Lee, A. Nathan, Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain. Science 354, 302 (2016).

  24. A. Barua, K.D. Leedy, R. Jha, Deep-subthreshold Schottky barrier IGZO TFT for ultra low-power applications. Solid State Electron. Lett. 2, 59 (2020)

    Article  Google Scholar 

  25. T. T. Trinh, K. Jang, V. A. Dao, J. Yi, Effect of high conductivity amorphous InGaZnO active layer on the field effect mobility improvement of thin film transistors. J. Appl. Phys. 116(21) (2014).

  26. X. Ding, J. Zhang, W. Shi, H. Ding, H. Zhang, J. Li, X. Jiang, Z. Zhang, C. Fu, Effect of gate insulator thickness on device performance of InGaZnO thin-film transistors. Mater. Sci. Semicond. Process. 29, 326 (2015)

    Article  CAS  Google Scholar 

  27. H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004 (2001)

    Article  CAS  Google Scholar 

  28. V. Castro, H. Rodríguez, F. Albericio, CuAAC: an efficient click chemistry reaction on solid phase. ACS Comb. Sci. 18, 1 (2016)

    Article  CAS  Google Scholar 

  29. J. Li, F. Zhou, H.-P. Lin, W.-Q. Zhu, J.-H. Zhang, X.-Y. Jiang, Z.-L. Zhang, Effect of reactive sputtered SiOx passivation layer on the stability of InGaZnO thin film transistors. Vacuum 86, 1840 (2012)

    Article  CAS  Google Scholar 

  30. X. Du, Y. Li, J.R. Motley, W.F. Stickle, G.S. Herman, Glucose sensing using functionalized amorphous In–Ga–Zn–O field-effect transistors. ACS Appl. Mater. Interfaces 8, 7631 (2016)

    Article  CAS  Google Scholar 

  31. J.-C. Lin, B.-R. Huang, Y.-K. Yang, IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors. Sens. Actuators B Chem. 184, 27 (2013)

    Article  CAS  Google Scholar 

  32. A. Qureshi, Y. Gurbuz, J.H. Niazi, Label-free capacitance based aptasensor platform for the detection of HER2/ErbB2 cancer biomarker in serum. Sens.s Actuators B Chem. 220, 1145 (2015)

    Article  CAS  Google Scholar 

  33. M.K. Patel, P.R. Solanki, S. Khandelwal, V.V. Agrawal, S.G. Ansari, B.D. Malhotra, Self-assembled monolayer based electrochemical nucleic acid sensor for Vibrio cholerate detection. J. Phys. Conf. Ser. 358, 012009 (2012)

    Article  Google Scholar 

  34. H. Kim, J.-Y. Kwon, Enzyme immobilization on metal oxide semiconductors exploiting amine functionalized layer. RSC Adv. 7, 19656 (2017)

    Article  CAS  Google Scholar 

  35. P. Xiao, L. Lan, T. Dong, Z. Lin, W. Shi, R. Yao, X. Zhu, J. Peng, InGaZnO thin-film transistors with back channel modification by organic self-assembled monolayers. Appl. Phys. Lett. 104, 051607 (2014)

    Article  Google Scholar 

  36. C.G. Allen, D.J. Baker, T.M. Brenner, C.C. Weigand, J.M. Albin, K.X. Steirer, D.C. Olson, C. Ladam, D.S. Ginley, R.T. Collins, T.E. Furtak, Alkyl surface treatments of planar zinc oxide in hybrid organic/inorganic solar cells. J. Phys. Chem. C 116, 8872 (2012)

    Article  CAS  Google Scholar 

  37. S.J. Kim, J. Jung, D.H. Yoon, H.J. Kim, The effect of various solvents on the back channel of solution-processed In–Ga–Zn–O thin-film transistors intended for biosensor applications. J. Phys. D. Appl. Phys. 46, 035102 (2013)

    Article  Google Scholar 

  38. K. Lee, P.R. Nair, A. Scott, M.A. Alam, D.B. Janes, Device considerations for development of conductance-based biosensors. J. Appl. Phys. 105, 102046 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation (NSF) (Grant numbers CNS-1556301, SHF-1718428, and ECCS-1926465). A.B. would like to thank Hope Kumalki, Vamshi Kiran Gogi, Dr. Necati Kaval, Dr. Yao Wu, Dr. Melodie A. Fickenscher, and the ERC Cleanroom and staff at the University of Cincinnati for their help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhijeet Barua or Rashmi Jha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barua, A., White, R.J., Leedy, K.D. et al. Ultra-low-power neurotransmitter sensor using novel “click” chemistry aptamer-functionalized deep subthreshold Schottky barrier IGZO TFT. MRS Communications 11, 233–243 (2021). https://doi.org/10.1557/s43579-021-00028-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00028-w

Keywords

Navigation