Skip to main content
Log in

Chemical/green synthesized cobalt/copper-doped α-Fe2O3 nanoparticles: Potential for environmental remediation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present investigation, Azadirachta indica (AI) leaf extract was used to create hematite nanoparticles (HNPs) with varied Co/Cu-dopant concentrations. The perspective characteristics of the synthesized samples were investigated with XRD, UV–Vis, Raman, SEM, TEM, FTIR, and VSM investigations. For HNPs with an average crystalline size of 12.52–23.93 nm, respectively, the XRD pattern showed crystalline hexagonal, corundum crystal structure, and combination of rhombohedral phases. Cauliflower/spherical-shaped morphologies were present in HNPs with a particle size range of 9.64–19.31 nm. Doped HNPs with saturation magnetization of 34.84–226.32 emu/g were found to have antiferromagnetic behavior. The methyl orange (MO) and methylene blue (MB) industrial waste dye degradation by the synthesized Co/Cu-doped HNPs under a UV/visible spectrophotometer demonstrated enhanced photocatalysis consummation, indicating that biosynthesis can be an excellent method for creating flexible and environmentally friendly products. Using a radical scavenging technique is known as 1,1-diphenyl-2-picrylhydrazyl (DPPH), the complex's antioxidant activity was assessed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M. Aalim, M.A. Shah, Modulation of magnetism and optical properties of hematite (α-Fe2O3) nanorods fabricated via thermal conversion of hydrothermally synthesized akaganeite (β-FeOOH). ECS J. Solid-State Sci. Technol. 11(9), 091008 (2022). https://doi.org/10.1149/2162-8777/ac90ea

    Article  ADS  CAS  Google Scholar 

  2. E.F. Aboelfetoh, A.E. Aboubaraka, E.Z.M. Ebeid, Synergistic effect of iron and copper oxides in the removal of organic dyes through thermal induced catalytic degradation process. J. Cluster Sci. (2023). https://doi.org/10.1007/s10876-022-02400-9

    Article  Google Scholar 

  3. P. Agarwal, J.B. Preethi, D.K. Bora, The anthocyanin coated hematite (α-Fe2O3) photoanode shows highest photoelectrochemical current density among a library of light-harvesting pigments. J. Photochem. Photobiol. A (2023). https://doi.org/10.1016/j.jphotochem.2023.114554

    Article  Google Scholar 

  4. F. Ahmad, M.M. Salem-Bekhit, F. Khan, S. Alshehri, A. Khan, M.M. Ghoneim, H.F. Wu, E.I. Taha, I. Elbagory, Unique properties of surface-functionalized nanoparticles for bio-application: functionalization mechanisms and importance in application. Nanomaterials 12(8), 1333 (2022). https://doi.org/10.3390/nano12081333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. H.Q. Alijani, A. Fathi, H.I.M. Amin, M.A. Lima Nobre, M.R. Akbarizadeh, M. Khatami, A.T. Jalil, M. Naderifar, F.S. Dehkordi, A. Shafiee, Biosynthesis of core-shell α-Fe2O3@ Au nano truffles and their biomedical applications. Biomass Conve. Biorefinery (2022). https://doi.org/10.1007/s13399-022-03561-3

    Article  Google Scholar 

  6. I. Sharma, P. Kumar, Synthesis and Characterization of Mn-Zn soft ferrite nanoparticle of [Gd sup 3+] doped. Eur. J. Mol. Clin. Med. 8(4), 1–10 (2021)

    Google Scholar 

  7. N. Thakur, P. Kumar, A. Tapwal, K. Jeet, Degradation of malachite green dye by capping polyvinylpyrrolidone and Azadirachta indica in hematite phase of Ni doped Fe2O3 nanoparticles via co-precipitation method. Nanofabrication (2023). https://doi.org/10.37819/nanofab.008.304

    Article  Google Scholar 

  8. B. Aslibeiki, N. Eskandarzadeh, H. Jalili, A.G. Varzaneh, P. Kameli, I. Orue, V. Chernenko, A. Hajalilou, L.P. Ferreira, M.M. Cruz, Magnetic hyperthermia properties of CoFeO nanoparticles: effect of polymer coating and interparticle interactions. Ceram. Int. 48(19), 27995–28005 (2022). https://doi.org/10.1016/j.ceramint.2022.06.104

    Article  CAS  Google Scholar 

  9. W. Astuti, A.A. Musfiroh, R. Yahya, T. Sulistyaningsih, Physicochemical and photodegradation characteristics of hematite-biochar nanocomposite prepared from bamboo sawdust. IOP Conf. Ser. 969(1), 012006 (2022). https://doi.org/10.1088/1755-1315/969/1/012006

    Article  Google Scholar 

  10. A.S. Athithan, J. Jeyasundari, Y.B.A. Jacob, Biological synthesis, physico-chemical characterization of undoped and Co doped α-Fe2O3 nanoparticles using Tribulus terrestris leaf extract and its antidiabetic, antimicrobial applications. Adv. Nat. Sci. 12(4), 045003 (2021). https://doi.org/10.1088/2043-6262/ac42c8

    Article  CAS  Google Scholar 

  11. M. Azeem, Q. Abbas, M.A. Abdelkareem, Olabi, Band gap and pseudocapacitance of Gd2O3 doped with Ni0.5Zn0.5Fe2O4. Phys. Scr. 98(1), 015838 (2022). https://doi.org/10.1088/1402-4896/acad3e

    Article  ADS  CAS  Google Scholar 

  12. D.K. Verma, A. Sharma, L. Awasthi, H. Singh, P. Kumar, P. Rajput, A. Sinha, K.K Chaubey, A. Kumar, N. Rai, R.K. Bachheti (2023) Recent development and importance of nanoparticles in disinfection and pathogen control. In Nanomaterials for environmental and agricultural sectors pp. 83–106. Singapore: Springer Nature Singapore https://doi.org/10.1007/978-981-99-2874-3_5

  13. J. Baranwal, B. Barse, A. Fais, G.L. Delogu, A. Kumar, Biopolymer: a sustainable material for food and medical applications. Polymers 14(5), 983 (2022). https://doi.org/10.3390/polym14050983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O. Borang, S. Srinath, S.N. Kaul, Y. Sundarayya, Temperature assisted size dependent synthesis and magnetic properties of rare-earth chromium oxide nanoparticles. J. Magn. Magn. Mater. 562, 169807 (2022). https://doi.org/10.1016/j.jmmm.2022.169807

    Article  CAS  Google Scholar 

  15. U. Chadha, S.K. Selvaraj, S.V. Thanu, V. Cholapadath, A.M. Abraham, M. Manoharan, V. Paramsivam, A review of the function of using carbon nanomaterials in membrane filtration for contaminant removal from wastewater. Mater. Res. Express 9(1), 012003 (2022). https://doi.org/10.1088/2053-1591/ac48b8

    Article  ADS  CAS  Google Scholar 

  16. P. Chowdhary, R.N. Bhargava, M.S. Khan, Role of industries in water scarcity and its adverse effects on the environment and human health. Environ. Concerns Sustain. Dev. 1, 235–256 (2022). https://doi.org/10.1007/978-981-13-5889-0_12

    Article  Google Scholar 

  17. Y. Cui, J. Cheng, Q. Chen, Z. Yin, The types of plasma reactors in wastewater treatment. IOP Conf. Ser. 208(1), 012002 (2018). https://doi.org/10.1088/1755-1315/208/1/012002

    Article  Google Scholar 

  18. N.C. da Silva, O.B.C. Assis, A.G. de Oliveira Sartori, S.M. de Alencar, M. Martelli-Tosi, Chitosan suspension as extractor and encapsulating agent of phenolics from acerola by-product. Food Res. Int. 161, 111855 (2022). https://doi.org/10.1016/j.foodres.2022.111855

    Article  CAS  PubMed  Google Scholar 

  19. F. Damiri, S. Andra, N. Kommineni, S.K. Balu, R. Bulusu, A.A. Boseila, D.O. Akamo, Z. Ahmad, F.S. Khan, M.H. Rahman, M. Berrada, Recent advances in adsorptive nanocomposite membranes for heavy metals ion removal from contaminated water: a comprehensive review. Materials 15(15), 5392 (2022). https://doi.org/10.3390/ma15155392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. P.T.H. Duyen, C.H. Diem, N.A. Tien, Cd-doped NdFeO3 nanoparticles: synthesis and optical properties study. J. Mater. Sci. (2022). https://doi.org/10.1007/s10854-021-07546-2

    Article  Google Scholar 

  21. M. Fritz, S. Korsten, X. Chen, G. Yang, Y. Lv, M. Liu, S. Wehner, C.B. Fischer, High-resolution particle size and shape analysis of the first Samarium nanoparticles biosynthesized from aqueous solutions via cyanobacteria Anabaena cylindrica. Nano Impact 26, 100398 (2022). https://doi.org/10.1016/j.impact.2022.100398

    Article  CAS  Google Scholar 

  22. V. Harish, M.M. Ansari, D. Tewari, M. Gaur, A.B. Yadav, M.L. García-Betancourt, F.M. Abdel-Haleem, M. Bechelany, A. Barhoum, Nanoparticle and nanostructure synthesis and controlled growth methods. Nanomaterials 12(18), 3226 (2022). https://doi.org/10.3390/nano12183226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J.Z. Hassan, A. Raza, U. Qumar, G. Li, Recent advances in engineering strategies of Bi-based photocatalysts for environmental remediation. Sustain. Mater. Technol. (2022). https://doi.org/10.1016/j.susmat.2022.e00478

    Article  Google Scholar 

  24. A.M. Huerta-Flores, G. Chávez-Angulo, O.A. Carrasco-Jaim, L.M. Torres-Martínez Garza-Navarro, Enhanced photoelectrochemical water splitting on heterostructured α-Fe2O3-TiO2: X (X= Co, Cu, Bi) photoanodes: role of metal doping on charge carrier dynamics improvement. J. Photochem. Photobiol. A 410, 113077 (2021). https://doi.org/10.1016/j.jphotochem.2020.113077

    Article  CAS  Google Scholar 

  25. A. Idrees, A. Shan, W.Q. Zaman, A. Mohsin, S.T. Abbas, A. Shakeel, S. Lyu, Efficient catalytic degradation of trichloroethylene in persulfate system by Ca-Fe2O and Cu-Fe2O3 nanoparticles: mechanistic insights. J. Environ. Chem. Eng. 10(2), 107196 (2022). https://doi.org/10.1016/j.jece.2022.107196

    Article  CAS  Google Scholar 

  26. M. Jeddi, M. Rabbani, A. Tarlani, Fabrication of novel Chlorophyll/CuFe2O4 nanoparticles exploiting as photocatalyst for dye-scavenging under LED light. Int. J. Environ. Sci. Technol. 19(11), 10547–10562 (2022). https://doi.org/10.1007/s13762-022-04239-z

    Article  CAS  Google Scholar 

  27. T. Jiao, C. You, N. Tian, Z. Duan, F. Yan, Structural distortion induced enhancement of magnetic and dielectric properties in Pr modified yttrium iron garnet films. Ceram. Int. 6(15), 10129–10138 (2022). https://doi.org/10.1016/j.ceramint.2022.11.196

    Article  CAS  Google Scholar 

  28. K.V. Karthik, A.V. Raghu, K.R. Reddy, R. Ravishankar, M. Sangeeta, N.P. Shetti, C.V. Reddy, Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere 287, 132081 (2022). https://doi.org/10.1016/j.chemosphere.2021.132081

    Article  CAS  PubMed  Google Scholar 

  29. A.U. Khan, H.U. Khan, M.S.O. Alhar, K. Tahir, Z.M. Almarhoon, M.E. Zaki, S. Latif, A. Shah, A.U. Khan, Antimicrobial, antioxidant, and antileishmanial activity of Tavernier glabra mediated ZnO NPs and Fe2O3 NPs. Inorg. Chem. Commun. (2022). https://doi.org/10.1016/j.inoche.2022.110297

    Article  Google Scholar 

  30. C. Khatana, A. Kumar, M.W. Alruways, N. Khan, N. Thakur, D. Kumar, A. Kumari, Antibacterial potential of zinc oxide nanoparticles synthesized using Aloe vera (L.) Burm f: a green approach to combat drug resistance. J. Pure Appl. Microbiol. 15(4), 1907–1914 (2021)

    Article  CAS  Google Scholar 

  31. P. Kumar, S. Kumar, N. Thakur, Azadirachta indica and polyvinylpyrrolidone encapsulated Fe2O3 nanoparticles to enhance the photocatalytic and antioxidant activity. Inorg. Chem. Commun. 155, 111084 (2023). https://doi.org/10.1016/j.inoche.2023.111084

    Article  CAS  Google Scholar 

  32. P. Kumar, N. Thakur, A. Tapwal, S. Kumar, Enhancing the adsorption capacity of green/chemical synthesized hematite nanoparticles by copper doping: removal of toxic Congo red dye and antioxidant activity. Appl. Nanosci. (2023). https://doi.org/10.1007/s13204-023-02943-x

    Article  Google Scholar 

  33. N. Thakur, N. Thakur, Removal of organic dyes and free radical assay by encapsulating polyvinylpyrrolidone and Tinospora Cordifolia in dual (Co–Cu) doped TiO2 nanoparticles. Environ. Pollut. 335, 122229 (2023). https://doi.org/10.1016/j.envpol.2023.122229

    Article  CAS  PubMed  Google Scholar 

  34. P. Kumar, N. Thakur, K. Kumar, K. Jeet, Photodegradation of methyl orange dye by using Azadirachta indica and chemically mediated synthesized cobalt doped α-Fe2O3 NPs through co-precipitation method. Mater. Today (2023). https://doi.org/10.1016/j.matpr.2023.01.257

    Article  Google Scholar 

  35. S.A.M.T. Lee, G.J. ChoLee, Control of the drying patterns for complex colloidal solutions and their applications. Nanomaterials 12(15), 2600 (2022). https://doi.org/10.3390/nano12152600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. F. Li, J. Jian, Y. Xu, S. Wang, H. Wang, H. Wang, Recent advances on interfacial engineering of hematite photoanodes for viable photo-electrochemical water splitting. Eng. Rep. 3(6), e12387 (2021). https://doi.org/10.1002/eng2.12387

    Article  CAS  Google Scholar 

  37. J.I. Lyu, J. Ryu, K.S. Seo, K.Y. Kang, S.H. Park, T.H. Ha, J.W. Ahn, S.Y. Kang, Comparative study on phenolic compounds and antioxidant activities of Hop (Humulus lupulus L.) strobile extracts. Plants 11(1), 135 (2022). https://doi.org/10.3390/plants11010135

    Article  PubMed  PubMed Central  Google Scholar 

  38. A. Mehtab, J. Ahmed, S.M. Alshehri, Y. Mao, T. Ahmad, Rare earth doped metal oxide nanoparticles for photocatalysis: a perspective. Nanotechnology 33(14), 142001 (2022). https://doi.org/10.1088/1361-6528/ac43e7

    Article  ADS  Google Scholar 

  39. E.A. Moaca, C.G. Watz, C. Pacurariu, L.B. Tudoran, R. Ianoș, V. Socoliuc, G.A. Draghici, A. Iftode, S. Liga, D. Dragoș, C.A. Dehelean, Biosynthesis of iron oxide nanoparticles: physico-chemical characterization and there they are vitro cytotoxicity on healthy and tumorigenic cell lines. Nanomaterials 12(12), 2012 (2022). https://doi.org/10.3390/nano12122012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. P. Mohanasundaram, A.M. Saral, Correlation between antioxidant property and total phenolic and flavonoid content of Azadirachta indica A Juss Flowers. ECS Trans. 107(1), 15021 (2022). https://doi.org/10.1149/10701.15021ecst

    Article  ADS  CAS  Google Scholar 

  41. A.V. Nartova, M.Y. Mashukov, R.R. Astakhov, V.Y. Kudinov, A.V. Matveev, A.G. Okunev, Particle recognition on transmission electron microscopy images using computer vision and deep learning for catalytic applications. Catalysts 12(2), 135 (2022). https://doi.org/10.3390/catal12020135

    Article  CAS  Google Scholar 

  42. D.T.C. Nguyen, T. Van Tran, T.T.T. Nguyen, D.H. Nguyen, M. Alhassan, T. Lee, New frontiers of invasive plants for biosynthesis of nanoparticles towards biomedical applications: a review. Sci. Total. Environ. (2022). https://doi.org/10.1016/j.scitotenv.2022.159278

    Article  PubMed  PubMed Central  Google Scholar 

  43. Z. Ni, C. Zhang, H. Ma, J. Liu, Z. Wang, L.M. Zhu, H. Jia, Facet-dependent photodegradation of nitro polycyclic aromatic hydrocarbons on hematite under visible light: Participation of environmentally persistent free radicals and reactive oxygen/nitrogen species. Appl. Catal. B 318, 121816 (2022). https://doi.org/10.1016/j.apcatb.2022.121816

    Article  CAS  Google Scholar 

  44. F.Y. Nisa, M.A. Rahman, M.K.J. Rafi, M.A.N. Khan, F. Sultana, M. Majid, M.A. Hossain, J.I. Deen, M. Mannan, S. Saha, J. Tangpong, Biosynthesized magnesium oxide nanoparticles from Tamarindus indica seed attenuate doxorubicin-induced cardiotoxicity by regulating biochemical indexes and linked genes. Biomater. Adv. (2023). https://doi.org/10.1016/j.bioadv.2023.213291

    Article  PubMed  Google Scholar 

  45. M.S. Patel, M. Sudeep, A.R. Faisal, B. Abhishek, B.W. Shivaraj, V. Chaudhary, C. Manjunatha, Functionalized iron oxide nanostructures: recent advances in the synthesis, characterization, and electrochemical biosensor applications. ECS Trans. 107(1), 15477 (2022). https://doi.org/10.1149/10701.15477ecst

    Article  ADS  CAS  Google Scholar 

  46. L.T. Quispe, L.L. Mamani, A.A. Baldárrago-Alcántara, L.L. Félix, G.F. Goya, J.A. Fuentes-García, D.G. Pacheco-Salazar, J.A. Coaquira, Synthesis and characterization of α-Fe2O3 nanoparticles showing potential applications for sensing quaternary ammonium vapor at room temperature. Nanotechnology 33(33), 335704 (2022). https://doi.org/10.1088/1361-6528/ac6c93

    Article  Google Scholar 

  47. H.M. Ragab, Influence of α-hematite nanorods (α-Fe2O3 NRs) on the optical, magnetic, and electrical properties of PEO/NaAlg blend for magneto-optical applications. J. Inorg. Organomet. Polym. Mater. (2022). https://doi.org/10.1007/s10904-022-02515-6

    Article  Google Scholar 

  48. S. Rani, M. Shekhar, P. Kumar, Study on quantitative Rietveld analysis of XRD patterns of different sizes of bismuth ferrite. Appl. Phys. A 128(12), 1046 (2022). https://doi.org/10.1007/s00339-022-06171-y

    Article  ADS  CAS  Google Scholar 

  49. S. Saini, S. Choudhary, A DFT study of transition metal doped two-dimensional Bismuth (Bismuthene) for spintronics applications. Adv. Nat. Sci. 13(1), 015005 (2022). https://doi.org/10.1088/2043-6262/ac53fe

    Article  Google Scholar 

  50. S. Sattariazar, N. Arsalani, S.N. Ebrahimi, Biological assessment of synthesized carbon dots from polyphenol enriched extract of pomegranate peel, incorporated with Mentha piperita essential oil. Mater. Chem. Phys. 294, 126981 (2023). https://doi.org/10.1016/j.matchemphys.2022.126981

    Article  CAS  Google Scholar 

  51. E.A. Shalaby, S.M. Shanab, W.M.A. El-Raheem, E.A. Hanafy, Biological activities and antioxidant potential of different biosynthesized nanoparticles of Moringa oleifera. Sci. Rep. 12(1), 18400 (2022). https://doi.org/10.1038/s41598-022-23164-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. N. Thakur, N. Thakur, P. Kumar, K. Kumar, Nitrogen recovery from the municipal wastewater treatment plants. In: Resource recovery in municipal waste waters, pp. 165–193, (2023). https://doi.org/10.1016/B978-0-323-99348-7.00012-6

  53. S. Sharma, K. Kumar, N. Thakur, S. Chauhan, M.S. Chauhan, Eco-friendly Ocimum tenuiflorum green route synthesis of CuO nanoparticles: characterizations on photocatalytic and antibacterial activities. J. Environ. Chem. Eng. 9(4), 05395 (2021). https://doi.org/10.1016/j.jece.2021.105395

    Article  CAS  Google Scholar 

  54. M. Sillanpaa, A.H. Mahvi, D. Balarak, A.D. Khatibi, Adsorption of Acid orange 7 dyes from aqueous solution using Polypyrrole/nanosilica composite: experimental and modelling. Int. J. Environ. Anal. Chem. 103(1), 212–229 (2023). https://doi.org/10.1080/03067319.2020.1855338

    Article  CAS  Google Scholar 

  55. A. Suligoj, R. Cerc Korosec, G. Zerjav, N. Novak Tusar, U. Lavrencic Stangar, Solar-driven photocatalytic films: synthesis approaches, factors affecting environmental activity, and characterization features. Top. Curr. Chem. 380(6), 51 (2022). https://doi.org/10.1007/s41061-022-00409-2

    Article  CAS  Google Scholar 

  56. T. Guo, L. Jiang, H. Huang, Y. Li, X. Wu, G. Zhang, Enhanced degradation of tetracycline in water over Cu-doped hematite nanoplates by peroxymonosulfate activation under visible light irradiation. J. Hazard. Mater. 416, 125838 (2021). https://doi.org/10.1016/j.jhazmat.2021.125838

    Article  CAS  PubMed  Google Scholar 

  57. M. Tadic, M. Panjan, B.V. Tadic, S. Kralj, J. Lazovic, Magnetic properties of mesoporous hematite/alumina nanocomposite and evaluation for biomedical applications. Ceram. Int. 48(7), 10004–10014 (2022). https://doi.org/10.1016/j.ceramint.2021.12.209

    Article  CAS  Google Scholar 

  58. N. Thakur, K.K. Anu, Effect of (Ag, Co) co-doping on the structural and antibacterial efficiency of CuO nanoparticles: A rapid microwave assisted method. J. Environ. Chem. Eng. 8(4), 104011 (2020). https://doi.org/10.1016/j.jece.2020.104011

    Article  CAS  Google Scholar 

  59. N. Thakur, K. Kumar, A. Kumar, Effect of (Ag, Zn) co-doping on structural, optical and bactericidal properties of CuO nanoparticles synthesized by a microwave-assisted method. Dalton Trans. 50(18), 6188–6203 (2021). https://doi.org/10.1039/D0DT04405A

    Article  CAS  PubMed  Google Scholar 

  60. N. Thakur, K. Kumar, V.K. Thakur, S. Soni, A. Kumar, S.S. Samant, Antibacterial and photocatalytic activity of undoped and (Ag, Fe) co-doped CuO nanoparticles via the microwave-assisted method. Nanofabrication 7, 1–27 (2022). https://doi.org/10.37819/nanofab.007.186

    Article  Google Scholar 

  61. N. Thakur, P. Kumar, N. Thakur, K. Kumar, A. Tapwal, P. Sharma, A review of new developments in the synthesis of CuO nanoparticles via plant extracts for enhancing the photocatalytic activity. Biomater. Polym. Horizon (2022). https://doi.org/10.37819/bph.1.331

    Article  Google Scholar 

  62. N. Thakur, N. Thakur, P. Chauhan, D.P. Sharma, A. Kumar, K. Jeet, Futuristic role of nanoparticles for treatment of COVID-19. Biomater. Polym. Horizon 1(2), 1–22 (2022). https://doi.org/10.37819/bph.001.02.0166

    Article  Google Scholar 

  63. N. Thakur, N. Thakur, K. Kumar, A. Kumar, Tinospora cordifolia mediated eco-friendly synthesis of Cobalt doped TiO2 NPs for degradation of organic methylene blue dye. Mater. Today (2023). https://doi.org/10.1016/j.matpr.2023.01.253

    Article  Google Scholar 

  64. S. Vignesh, H. Kim, Interfacial coupling effects in α-Fe2O3/g-C3N4 composite magnetically separable heterojunction with upgraded Z-scheme photocatalytic performance of mixed organic pollutant degradation. J. Phys. Chem. Solids 169, 110869 (2022). https://doi.org/10.1016/j.jpcs.2022.110869

    Article  CAS  Google Scholar 

  65. H. Vijayan, A. Povlsen, J. Thomas-Hunt, M.I. Mørch, M. Christensen, Exploiting different morphologies of non-ferromagnetic interacting precursors for preparation of hexaferrite magnets. J. Alloys Compd. 915, 165333 (2022). https://doi.org/10.1016/j.jallcom.2022.165333

    Article  CAS  Google Scholar 

  66. R. Vinayagam, Y. Patnaik, P. Brijesh, D. Prabhu, M. Quadras, S. Pai, M.K. Narasimhan, K. Kaviyarasu, T. Varadavenkatesan, R. Selvaraj, Superparamagnetic hematite spheroids synthesis, characterization, and catalytic activity. Chemosphere 294, 133730 (2022). https://doi.org/10.1016/j.chemosphere.2022.133730

    Article  CAS  PubMed  Google Scholar 

  67. J. Wairata, A. Fadlan, A.S. Purnomo, M. Taher, T. Ersam, Total phenolic and flavonoid contents, antioxidant, antidiabetic and antiplasmodial activities of Garcinia forbesii King: a correlation study. Arab. J. Chem. 15(2), 103541 (2022). https://doi.org/10.1016/j.arabjc.2021.103541

    Article  CAS  Google Scholar 

  68. C.C. Wang, J.H. Chen, J.W. Yeh, S.J. Lin, S.Y. Chang, Y.C. Lo, C.C. Yen, K.H. Lin, C.M. Tseng, T.N. Lam, S.A. Chen, Microstructure evolution in high-pressure phase transformations of CrFeNi and CoCrFeMnNi alloys. J. Alloys Compd. 918, 165383 (2022). https://doi.org/10.1016/j.jallcom.2022.165383

    Article  CAS  Google Scholar 

  69. S. Wang, J. Zhu, T. Li, F. Ge, Z. Zhang, R. Zhu, H. Xie, Y. Xu, Oxygen vacancy-mediated CuCoFe/Tartrate-LDH catalyst directly activates oxygen to produce superoxide radicals: transformation of active species and implication for nitrobenzene Degradation. Environ. Sci. Technol. 56(12), 7924–7934 (2022). https://doi.org/10.1021/acs.est.2c00522

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Q. Wu, Wastewater treatment by enhanced H2O2-based advanced oxidation process (AOP) methods: a review. J. Phys. 2152(1), 01201 (2022). https://doi.org/10.1088/1742-6596/2152/1/012011

    Article  Google Scholar 

  71. W.Z.W.M. Zain, N.A. Hamid, N. Nazihah, N. Izzah, N. Azaman, N.W. Ramli, B. Yamin, S.A.N.C. Musa, Phytochemical screening, Total Phenolic and Flavonoid content of Jupiter variety leaves extract and their antioxidant and insecticidal activity. IOP Conf. Ser. 1059(1), 012059 (2022). https://doi.org/10.1088/1755-1315/1059/1/012059

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Centre for Nano-Science and Technology in Career Point University, Hamirpur (H.P.) for providing all the necessary facilities to conduct research work. In addition, the authors are grateful to Sophisticated Analytical Instrumentation Facility, Panjab University, Punjab and Sprint Testing Solutions, Mumbai, for the assistance of characterization of samples.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

PK, NT: Conception and design of study, PK, NT: Acquisition of data, PK, NT: Analysis and/or interpretation of data, PK, SK, AT, NT: Drafting the manuscript, PK, SK, AT, NT Revising the manuscript critically for important intellectual content, PK, SK, AT, and NT: Approval of the version of the manuscript to be published.

Corresponding author

Correspondence to Naveen Thakur.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Consent to participate

Not required.

Consent to publish

Not required.

Ethical approval

Not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2230 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Kumar, S., Tapwal, A. et al. Chemical/green synthesized cobalt/copper-doped α-Fe2O3 nanoparticles: Potential for environmental remediation. Journal of Materials Research 39, 836–849 (2024). https://doi.org/10.1557/s43578-023-01274-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01274-5

Keywords

Navigation