Skip to main content
Log in

Effects of different fabrication conditions on the performance of free-standing carbon nanofiber cathodes in lithium–oxygen batteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study focuses on the systematic development of free-standing mats consisting of nonwoven carbon nanofibers (CNFs) via electrospinning for a lithium–oxygen battery (LOB) cathode. Electrospun fiber mats prepared using a polyacrylonitrile polymer were carbonized to CNFs at various temperatures ranging from 800 to 1200 °C. The diameter of the CNFs was controlled from 500 to 100 nm. The graphitization degree of the CNFs increased with increasing carbonization temperatures and decreasing CNF diameters and, thus, generated a higher electrical conductivity. The electrochemical performance of CNF cathodes with the different physicochemical properties was systematically evaluated together with close observation of discharge products and gas analyses. The LOB cell using the CNF-100–1200 cathode, with the smallest diameter and highest graphitization degree, exhibited the interesting galvanostatic performance with specific capacity of 7832 mAh/g at 200 mA/g and a cycle stability of 173 cycles with a cut-off capacity of 1000 mAh/g at 500 mA/g among the samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article. There are no data that need to be stored and presented.

References

  1. W.H. Ryu, T.H. Yoon, S.H. Song, S. Jeon, Y.J. Park, I.D. Kim, Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li–O2 batteries. Nano Lett. 13, 4190–4197 (2013). https://doi.org/10.1021/nl401868q

    Article  ADS  CAS  PubMed  Google Scholar 

  2. F. Duffner, M. Wentker, M. Greenwood, J. Leker, Battery cost modeling: a review and directions for future research. Renew. Sustain. Energy Rev. 127, 109872 (2020). https://doi.org/10.1016/j.rser.2020.109872

    Article  Google Scholar 

  3. H.-G. Jung, J. Hassoun, J.-B. Park, Y.-K. Sun, B. Scrosati, An improved high-performance lithium–air battery. Nat. Chem. 4, 579–585 (2012). https://doi.org/10.1038/nchem.1376

    Article  CAS  PubMed  Google Scholar 

  4. Z. Qian, R. Guo, Y. Ma, C. Li, L. Du, Y. Wang, C. Du, H. Huo, G. Yin, Se-doped carbon as highly stable cathode material for high energy nonaqueous Li–O2 batteries. Chem. Eng. Sci. 214, 115413 (2020). https://doi.org/10.1016/j.ces.2019.115413

    Article  CAS  Google Scholar 

  5. A.C. Luntz, B.D. McCloskey, Nonaqueous Li–air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014). https://doi.org/10.1021/cr500054y

    Article  CAS  PubMed  Google Scholar 

  6. D.Y. Kim, M. Kim, D.W. Kim, J. Suk, O.O. Park, Y. Kang, Flexible binder-free graphene paper cathodes for high-performance Li–O2 batteries. Carbon 93, 625–635 (2015). https://doi.org/10.1016/j.carbon.2015.05.097

    Article  CAS  Google Scholar 

  7. M.W. Ayers, H.-Y.S. Huang, A comprehensive finite element model for lithium–oxygen batteries. J. Mater. Res. 31, 2728–2735 (2016). https://doi.org/10.1557/jmr.2016.306

    Article  ADS  CAS  Google Scholar 

  8. S.S. Sandhu, G.W. Brutchen, J.P. Fellner, Lithium/air cell: preliminary mathematical formulation and analysis. J. Power. Sources 170, 196–209 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.006

    Article  ADS  CAS  Google Scholar 

  9. M. Balaish, J.-W. Jung, I.-D. Kim, Y. Ein-Eli, A critical review on functionalization of air-cathodes for nonaqueous Li–O2 batteries. Adv. Func. Mater. 30, 1808303 (2020). https://doi.org/10.1002/adfm.201808303

    Article  CAS  Google Scholar 

  10. H.-D. Lim, Y.S. Yun, S.Y. Cho, K.-Y. Park, M.Y. Song, H.-J. Jin, K. Kang, All-carbon-based cathode for a true high-energy-density Li–O2 battery. Carbon 114, 311–316 (2017). https://doi.org/10.1016/j.carbon.2016.12.014

    Article  CAS  Google Scholar 

  11. M. Lee, Y. Yoo, J.H. Kwak, Y.S. Yun, H.-G. Jung, D. Byun, S.H. Oh, H.-D. Lim, Effect of surface characteristics of carbon host on electrochemical performance of nonaqueous Li–O2 batteries. Chem. Eng. J. 412, 128549 (2021). https://doi.org/10.1016/j.cej.2021.128549

    Article  CAS  Google Scholar 

  12. E. Nasybulin, W. Xu, M.H. Engelhard, Z. Nie, X.S. Li, J.-G. Zhang, Stability of polymer binders in Li–O2 batteries. J. Power. Sources 243, 899–907 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.097

    Article  ADS  CAS  Google Scholar 

  13. S.S. Zhang, T.R. Jow, Study of poly(acrylonitrile-methyl methacrylate) as binder for graphite anode and LiMn2O4 cathode of Li-ion batteries. J. Power. Sources 109, 422–426 (2002). https://doi.org/10.1016/S0378-7753(02)00107-6

    Article  ADS  CAS  Google Scholar 

  14. Q.-C. Zhu, F.-H. Du, S.-M. Xu, Z.-K. Wang, K.-X. Wang, J.-S. Chen, Hydroquinone resin induced carbon nanotubes on Ni foam as binder-free cathode for Li–O2 batteries. ACS Appl. Mater. Interfaces 8, 3868–3873 (2016). https://doi.org/10.1021/acsami.5b10669

    Article  CAS  PubMed  Google Scholar 

  15. H.T. Bui, D.Y. Kim, D.W. Kim, J. Suk, Y. Kang, Carbon nanofiber@platinum by a coaxial electrospinning and their improved electrochemical performance as a Li−O2 battery cathode. Carbon 130, 94–104 (2018). https://doi.org/10.1016/j.carbon.2017.12.111

    Article  CAS  Google Scholar 

  16. H.T. Bui, D.Y. Kim, Y.Y. Kim, N.H. Le, D.W. Kim, J. Suk, Y. Kang, Macroporous carbon nanofiber decorated with platinum nanorods as free-standing cathodes for high-performance Li–O2 batteries. Carbon 154, 448–456 (2019). https://doi.org/10.1016/j.carbon.2019.08.025

    Article  CAS  Google Scholar 

  17. A.L. Andrady, Science and technology of polymer nanofibers (John Wiley, New Jersey, 2007)

    Google Scholar 

  18. Y. Yang, A. Centrone, L. Chen, F. Simeon, T. Alan Hatton, G.C. Rutledge, Highly porous electrospun polyvinylidene fluoride (PVDF)-based carbon fiber. Carbon 49, 3395–3403 (2011). https://doi.org/10.1016/j.carbon.2011.04.015

    Article  CAS  Google Scholar 

  19. S. Radhakanth, R. Singhal, In–situ synthesis of MnO dispersed carbon nanofibers as binder-free electrodes for high-performance supercapacitors. Chem. Eng. Sci. 265, 118224 (2023). https://doi.org/10.1016/j.ces.2022.118224

    Article  CAS  Google Scholar 

  20. Y. Liu, J. Zhou, L. Chen, P. Zhang, W. Fu, H. Zhao, Y. Ma, X. Pan, Z. Zhang, W. Han, E. Xie, Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors. ACS Appl. Mater. Interfaces 7, 23515–23520 (2015). https://doi.org/10.1021/acsami.5b06107

    Article  CAS  PubMed  Google Scholar 

  21. J. Huang, B. Zhang, Y.Y. Xie, W.W.K. Lye, Z.-L. Xu, S. Abouali, M. Akbari Garakani, J.-Q. Huang, T.-Y. Zhang, B. Huang, J.-K. Kim, Electrospun graphitic carbon nanofibers with in-situ encapsulated Co–Ni nanoparticles as freestanding electrodes for Li–O2 batteries. Carbon 100, 329–336 (2016). https://doi.org/10.1016/j.carbon.2016.01.012

    Article  CAS  Google Scholar 

  22. K.-N. Jung, J.-I. Lee, S. Yoon, S.-H. Yeon, W. Chang, K.-H. Shin, J.-W. Lee, Manganese oxide/carbon composite nanofibers: electrospinning preparation and application as a bi-functional cathode for rechargeable lithium–oxygen batteries. J. Mater. Chem. 22, 21845–21848 (2012). https://doi.org/10.1039/C2JM34500E

    Article  CAS  Google Scholar 

  23. H.R. Yao, Y.X. Yin, Y.G. Guo, Size effects in lithium ion batteries. Chin. Phys. B 25, 018203 (2016). https://doi.org/10.1088/1674-1056/25/1/018203

    Article  ADS  CAS  Google Scholar 

  24. Y. Wu, M.V. Reddy, B.V.R. Chowdari, S. Ramakrishna, Long-term cycling studies on electrospun carbon nanofibers as anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 5, 12175–12184 (2013). https://doi.org/10.1021/am404216j

    Article  CAS  PubMed  Google Scholar 

  25. X.J. Chen, V.V. Bevara, P. Andrei, M. Hendrickson, E.J. Plichta, J.P. Zheng, Combined effects of oxygen diffusion and electronic resistance in li-air batteries with carbon nanofiber cathodes. J. Electrochem. Soc. 161, A1877 (2014). https://doi.org/10.1149/2.0721412jes

    Article  CAS  Google Scholar 

  26. A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martínez-Alonso, J.M.D. Tascón, Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials. J. Mater. Chem. 8, 2875–2879 (1998). https://doi.org/10.1039/A805841E

    Article  CAS  Google Scholar 

  27. G.A. Zickler, B. Smarsly, N. Gierlinger, H. Peterlik, O. Paris, A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon 44, 3239–3246 (2006). https://doi.org/10.1016/j.carbon.2006.06.029

    Article  CAS  Google Scholar 

  28. F. Tuinstra, J.L. Koenig, Characterization of graphite fiber surfaces with Raman spectroscopy. J. Compos. Mater. 4, 492–499 (1970). https://doi.org/10.1177/002199837000400405

    Article  ADS  CAS  Google Scholar 

  29. T. Gruber, T.W. Zerda, M. Gerspacher, Raman studies of heat-treated carbon blacks. Carbon 32, 1377–1382 (1994). https://doi.org/10.1016/0008-6223(94)90125-2

    Article  CAS  Google Scholar 

  30. S.N. Arshad, M. Naraghi, I. Chasiotis, Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49, 1710–1719 (2011). https://doi.org/10.1016/j.carbon.2010.12.056

    Article  CAS  Google Scholar 

  31. X. Jiao, Y. Qiu, L. Zhang, X. Zhang, Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees. RSC Adv. 7, 52337–52344 (2017). https://doi.org/10.1039/C7RA10809E

    Article  ADS  CAS  Google Scholar 

  32. Y. Wang, J.J. Santiago-Aviles, Early stages on the graphitization of electrostatically generated PAN nanofibers. Proceedings of the 2nd IEEE conference on nanotechnology. 29–32 (2002)

  33. J.-C. Li, D.-M. Tang, P.-X. Hou, G.-X. Li, M. Cheng, C. Liu, H.-M. Cheng, The effect of carbon support on the oxygen reduction activity and durability of single-atom iron catalysts. MRS Commun. 8, 1158–1166 (2018). https://doi.org/10.1557/mrc.2018.174

    Article  CAS  Google Scholar 

  34. M. Naraghi, S.N. Arshad, I. Chasiotis, Molecular orientation and mechanical property size effects in electrospun polyacrylonitrile nanofibers. Polymer 52, 1612–1618 (2011). https://doi.org/10.1016/j.polymer.2011.02.013

    Article  CAS  Google Scholar 

  35. S.-C. Wong, A. Baji, S. Leng, Effect of fiber diameter on tensile properties of electrospun poly(ɛ-caprolactone). Polymer 49, 4713–4722 (2008). https://doi.org/10.1016/j.polymer.2008.08.022

    Article  CAS  Google Scholar 

  36. D. Papkov, A. Goponenko, O.C. Compton, Z. An, A. Moravsky, X.-Z. Li, S.T. Nguyen, Y.A. Dzenis, Improved graphitic structure of continuous carbon nanofibers via graphene oxide templating. Adv. Funct. Mater. 23, 5763–5770 (2013). https://doi.org/10.1002/adfm.201300653

    Article  CAS  Google Scholar 

  37. B.D. McCloskey, A. Valery, A.C. Luntz, S.R. Gowda, G.M. Wallraff, J.M. Garcia, T. Mori, L.E. Krupp, Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 4, 2989–2993 (2013). https://doi.org/10.1021/jz401659f

    Article  CAS  PubMed  Google Scholar 

  38. M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, P.G. Bruce, The carbon electrode in nonaqueous Li–O2 cells. J. Am. Chem. Soc. 135, 494–500 (2013). https://doi.org/10.1021/ja310258x

    Article  CAS  PubMed  Google Scholar 

  39. S. Nakanishi, F. Mizuno, K. Nobuhara, T. Abe, H. Iba, Influence of the carbon surface on cathode deposits in non-aqueous Li–O2 batteries. Carbon 50, 4794–4803 (2012). https://doi.org/10.1016/j.carbon.2012.06.003

    Article  CAS  Google Scholar 

  40. V.S. Bryantsev, F. Faglioni, Predicting autoxidation stability of ether- and amide-based electrolyte solvents for Li–air batteries. J. Phys. Chem. A 116, 7128–7138 (2012). https://doi.org/10.1021/jp301537w

    Article  CAS  PubMed  Google Scholar 

  41. A. Khetan, H. Pitsch, V. Viswanathan, Solvent degradation in nonaqueous Li–O2 batteries: oxidative stability versus H-abstraction. J. Phys. Chem. Lett. 5, 2419–2424 (2014). https://doi.org/10.1021/jz501154v

    Article  CAS  PubMed  Google Scholar 

  42. W. Walker, V. Giordani, J. Uddin, V.S. Bryantsev, G.V. Chase, D. Addison, A rechargeable Li–O2 battery using a lithium nitrate/N,N-Dimethylacetamide electrolyte. J. Am. Chem. Soc. 135, 2076–2079 (2013). https://doi.org/10.1021/ja311518s

    Article  CAS  PubMed  Google Scholar 

  43. B. Liu, W. Xu, P. Yan, P. Bhattacharya, R. Cao, M.E. Bowden, M.H. Engelhard, C.-M. Wang, J.-G. Zhang, In Situ-grown ZnCo2O4 on single-walled carbon nanotubes as air electrode materials for rechargeable lithium-oxygen batteries. Chemsuschem 8, 3697–3703 (2015). https://doi.org/10.1002/cssc.201500636

    Article  CAS  PubMed  Google Scholar 

  44. J. Xie, X. Yao, Q. Cheng, I.P. Madden, P. Dornath, C.-C. Chang, W. Fan, D. Wang, Three dimensionally ordered mesoporous carbon as a stable, high-performance Li–O2 battery cathode. Angew. Chem. Int. Ed. 54, 4299–4303 (2015). https://doi.org/10.1002/anie.201410786

    Article  CAS  Google Scholar 

  45. S.M. Cho, S.W. Hwang, J.H. Yom, W.Y. Yoon, Pd3Co/MWCNTs composite electro-catalyst cathode material for use in lithium-oxygen batteries. J. Electrochem. Soc. 162, A2236 (2015). https://doi.org/10.1149/2.0321512jes

    Article  CAS  Google Scholar 

  46. B. Sun, X. Huang, S. Chen, P. Munroe, G. Wang, Porous graphene nanoarchitectures: an efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries. Nano Lett. 14, 3145–3152 (2014). https://doi.org/10.1021/nl500397y

    Article  ADS  CAS  PubMed  Google Scholar 

  47. K. Song, J. Jung, M. Park, H. Park, H.-J. Kim, S.-I. Choi, J. Yang, K. Kang, Y.-K. Han, Y.-M. Kang, Anisotropic surface modulation of Pt catalysts for highly reversible Li–O2 batteries: high index facet as a critical descriptor. ACS Catal. 8, 9006–9015 (2018). https://doi.org/10.1021/acscatal.8b02172

    Article  CAS  Google Scholar 

  48. J.-J. Xu, Z.-L. Wang, D. Xu, L.-L. Zhang, X.-B. Zhang, Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 4, 2438 (2013). https://doi.org/10.1038/ncomms3438

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Korea Research Institute of Chemical Technology. This research was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.99-2020.67.

Funding

This work was funded by National Foundation for Science and Technology Development, 103.99-2020.67, Hieu Trung Bui. This work was also supported by the Korea Research Institute of Chemical Technology.

Author information

Authors and Affiliations

Authors

Contributions

HTB contributed to conceptualization, data curation, methodology, investigation, and writing-original draft. TYK contributed to investigation. DYK contributed to investigation, writing-original draft, writing-review & editing, and supervision. DWK contributed to investigation, data curation, and validation. JS contributed to validation. YK contributed to supervision, project administration, and funding acquisition.

Corresponding authors

Correspondence to Do Youb Kim or Yongku Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5149 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, H.T., Kim, T.Y., Kim, D.Y. et al. Effects of different fabrication conditions on the performance of free-standing carbon nanofiber cathodes in lithium–oxygen batteries. Journal of Materials Research 39, 535–547 (2024). https://doi.org/10.1557/s43578-023-01248-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01248-7

Keywords

Navigation