Skip to main content
Log in

Polyol process: Combined modification and assessment of morphological changes in PEMFC bimetallic catalysts at all stages of research

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study proposes using the modified polyol synthesis method to obtain state-of-the-art bimetallic catalysts for PEMFCs. One-step and multi-step implementation of the polyol process in an acceptable temperature range, without any hard-to-remove surfactants, requires no complex equipment and allows for the efficient reduction of precursors to nanoparticles. The high-performance catalysts based on the PtCu nanoparticles were obtained by the one-step strategy. These catalysts exhibited an excellent ORR activity that was twice as high as that of commercial Pt/C. The multi-step strategy was used to obtain the gradient-architecture PtCu nanoparticles with an increased stability during stress testing. HR-TEM, EDX, STEM, XRD, and TXRF were used for a detailed study of the catalysts’ microstructure. The key feature of this study consists in monitoring the materials’ characteristics at different stages of their evolution: from the moment of synthesizing them to the state corresponding to the completion of certain stages of the electrochemical measurements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. K. Kodama, T. Nagai, A. Kuwaki, R. Jinnouchi, Y. Morimoto, Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat. Nanotechnol. 16, 140–147 (2021). https://doi.org/10.1038/s41565-020-00824-w

    Article  CAS  Google Scholar 

  2. H. Cruz-Martínez, H. Rojas-Chávez, P.T. Matadamas-Ortiz, J.C. Ortiz-Herrera, E. López-Chávez, O. Solorza-Feria, D.I. Medina, Current progress of Pt-based ORR electrocatalysts for PEMFCs: an integrated view combining theory and experiment. Mater. Today Phys. 19, 100406 (2021). https://doi.org/10.1016/J.MTPHYS.2021.100406

    Article  Google Scholar 

  3. D. Banham, S. Ye, Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective. ACS Energy Lett. 2, 629–638 (2017). https://doi.org/10.1021/acsenergylett.6b00644

    Article  CAS  Google Scholar 

  4. J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. Nørskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009). https://doi.org/10.1038/nchem.367

    Article  CAS  Google Scholar 

  5. Y.J. Wang, N. Zhao, B. Fang, H. Li, X.T. Bi, H. Wang, Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 115, 3433–3467 (2015). https://doi.org/10.1021/CR500519C

    Article  CAS  Google Scholar 

  6. E.J. Coleman, M.H. Chowdhury, A.C. Co, Insights into the oxygen reduction reaction activity of Pt/C and PtCu/C catalysts. ACS Catal. 5, 1245–1253 (2015). https://doi.org/10.1021/CS501762G

    Article  CAS  Google Scholar 

  7. L.J. Moriau, A. Hrnjić, A. Pavlišič, A.R. Kamšek, U. Petek, F. Ruiz-Zepeda, M. Šala, L. Pavko, V.S. Šelih, M. Bele, P. Jovanovič, M. Gatalo, N. Hodnik, Resolving the nanoparticles’ structure-property relationships at the atomic level: a study of Pt-based electrocatalysts. IScience 24, 102102 (2021). https://doi.org/10.1016/J.ISCI.2021.102102

    Article  CAS  Google Scholar 

  8. I. Falina, A. Pavlets, A. Alekseenko, E. Titskaya, N. Kononenko, Influence of PtCu/C catalysts composition on electrochemical characteristics of polymer electrolyte fuel cell and properties of proton exchange membrane. Catalysts 11, 1063 (2021). https://doi.org/10.3390/CATAL11091063

    Article  CAS  Google Scholar 

  9. Y. Sohn, J.H. Park, P. Kim, J.B. Joo, Dealloyed PtCu catalyst as an efficient electrocatalyst in oxygen reduction reaction. Curr. Appl. Phys. (2015). https://doi.org/10.1016/j.cap.2015.05.013

    Article  Google Scholar 

  10. Z. Xiao, H. Wu, H. Zhong, A. Abdelhafiz, J. Zeng, De-alloyed PtCu/C catalysts with enhanced electrocatalytic performance for the oxygen reduction reaction. Nanoscale 13, 13896–13904 (2021). https://doi.org/10.1039/D1NR02820K

    Article  CAS  Google Scholar 

  11. Z. Xiao, Y. Jiang, H. Wu, H. Zhong, H. Song, A. Abdelhafiz, J. Zeng, De-alloyed ternary electrocatalysts with high activity and stability for oxygen reduction reaction. J. Alloys Compd. 877, 160221 (2021). https://doi.org/10.1016/J.JALLCOM.2021.160221

    Article  CAS  Google Scholar 

  12. F. Vdovenkov, E. Bedova, O. Kozaderov, Phase transformation during the selective dissolution of a Cu85Pd15 alloy: nucleation kinetics and contribution to electrocatalytic activity. Materials 16, 1606 (2023). https://doi.org/10.3390/MA16041606

    Article  CAS  Google Scholar 

  13. X. Zhao, K. Sasaki, Advanced Pt-based core-shell electrocatalysts for fuel cell cathodes. Acc. Chem. Res. 55, 1226–1236 (2022). https://doi.org/10.1021/ACS.ACCOUNTS.2C00057

    Article  CAS  Google Scholar 

  14. Q. Li, G. Zhang, B. Yuan, S. Zhong, Y. Ji, Y. Liu, X. Wu, Q. Kong, J. Han, W. He, Core-shell nanocatalysts with reduced platinum content toward more cost-effective proton exchange membrane fuel cells. Nano Select 3, 1459–1483 (2022). https://doi.org/10.1002/NANO.202200111

    Article  CAS  Google Scholar 

  15. X. Lyu, Y. Jia, X. Mao, D. Li, G. Li, L. Zhuang, X. Wang, D. Yang, Q. Wang, A. Du, X. Yao, Gradient-concentration design of stable core-shell nanostructure for acidic oxygen reduction electrocatalysis. Adv. Mater. 32, 2003493 (2020). https://doi.org/10.1002/ADMA.202003493

    Article  CAS  Google Scholar 

  16. A.A. Alekseenko, V.E. Guterman, S.V. Belenov, V.S. Menshikov, N.Y. Tabachkova, O.I. Safronenko, E.A. Moguchikh, Pt/C electrocatalysts based on the nanoparticles with the gradient structure. Int. J. Hydrog. Energy 43, 3676–3687 (2018). https://doi.org/10.1016/J.IJHYDENE.2017.12.143

    Article  CAS  Google Scholar 

  17. Y. Liao, J. Li, S. Zhang, S. Chen, High index surface-exposed and composition-graded PtCu3@Pt3Cu@Pt nanodendrites for high-performance oxygen reduction. Chin. J. Catal. 42, 1108–1116 (2021). https://doi.org/10.1016/S1872-2067(20)63735-4

    Article  CAS  Google Scholar 

  18. T. Lim, O.H. Kim, Y.E. Sung, H.J. Kim, H.N. Lee, Y.H. Cho, O.J. Kwon, Preparation of onion-like Pt-terminated Pt–Cu bimetallic nano-sized electrocatalysts for oxygen reduction reaction in fuel cells. J. Power Sources 316, 124–131 (2016). https://doi.org/10.1016/J.JPOWSOUR.2016.03.068

    Article  CAS  Google Scholar 

  19. J.A. Herron, J. Jiao, K. Hahn, G. Peng, R.R. Adzic, M. Mavrikakis, Oxygen reduction reaction on platinum-terminated “onion-structured” alloy catalysts. Electrocatalysis 3, 192–202 (2012). https://doi.org/10.1007/S12678-012-0087-0/METRICS

    Article  CAS  Google Scholar 

  20. H. Zhang, M. Jin, J. Wang, M.J. Kim, D. Yang, Y. Xia, Nanocrystals composed of alternating shells of Pd and Pt can be obtained by sequentially adding different precursors. J. Am. Chem. Soc. 133, 10422–10425 (2011). https://doi.org/10.1021/JA204447K

    Article  CAS  Google Scholar 

  21. T. Nakamoto, R. Seki, K. Motomiya, S. Yokoyama, K. Tohji, H. Takahashi, Morphological control of carbon-supported Pt-based nanoparticles via one-step synthesis. Nano-Struct. Nano-Objects 22, 100443 (2020). https://doi.org/10.1016/J.NANOSO.2020.100443

    Article  CAS  Google Scholar 

  22. J. Garcia-Cardona, I. Sirés, M. Mazzucato, R. Brandiele, E. Brillas, F. Alcaide, C. Durante, P.L. Cabot, On the viability of chitosan-derived mesoporous carbons as supports for PtCu electrocatalysts in PEMFC. Electrochim. Acta 442, 141911 (2023). https://doi.org/10.1016/J.ELECTACTA.2023.141911

    Article  CAS  Google Scholar 

  23. W. Yan, D. Zhang, Q. Zhang, Y. Sun, S. Zhang, F. Du, X. Jin, Synthesis of PtCu–based nanocatalysts: fundamentals and emerging challenges in energy conversion. J. Energy Chem. 64, 583–606 (2022). https://doi.org/10.1016/J.JECHEM.2021.05.003

    Article  CAS  Google Scholar 

  24. V. Menshikov, K. Paperzh, Y. Bayan, Y. Beskopylny, A. Nikulin, I. Pankov, S. Belenov, The development of high-performance platinum-ruthenium catalysts for the methanol oxidation reaction: gram-scale synthesis. Compos. Morphol. Funct. Charact. Catal. 12, 1257 (2022). https://doi.org/10.3390/CATAL12101257/S1

    Article  CAS  Google Scholar 

  25. S. Chen, Q. Yang, H. Wang, S. Zhang, J. Li, Y. Wang, W. Chu, Q. Ye, L. Song, Initial reaction mechanism of platinum nanoparticle in methanol-water system and the anomalous catalytic effect of water. Nano Lett. 15, 5961–5968 (2015). https://doi.org/10.1021/ACS.NANOLETT.5B02098

    Article  CAS  Google Scholar 

  26. J. Quinson, J. Bucher, S.B. Simonsen, L.T. Kuhn, S. Kunz, M. Arenz, Monovalent alkali cations: simple and eco-friendly stabilizers for surfactant-free precious metal nanoparticle colloids. ACS Sustain. Chem. Eng. 7, 13680–13686 (2019). https://doi.org/10.1021/ACSSUSCHEMENG.9B00681

    Article  CAS  Google Scholar 

  27. D. Fang, L. Wan, Q. Jiang, H. Zhang, X. Tang, X. Qin, Z. Shao, Z. Wei, Wavy PtCu alloy nanowire networks with abundant surface defects enhanced oxygen reduction reaction. Nano Res. 12, 2766–2773 (2019). https://doi.org/10.1007/S12274-019-2511-8

    Article  CAS  Google Scholar 

  28. L. Liu, G. Samjeské, S. Takao, K. Nagasawa, Y. Iwasawa, Fabrication of PtCu and PtNiCu multi-nanorods with enhanced catalytic oxygen reduction activities. J. Power Sources 253, 1–8 (2014). https://doi.org/10.1016/J.JPOWSOUR.2013.12.028

    Article  CAS  Google Scholar 

  29. V. Menshikov, K. Paperzh, N. Toporkov, S. Belenov, Synthesis, composition, structure, and electrochemical behavior of platinum–ruthenium catalysts. Inorganics 11, 28 (2023). https://doi.org/10.3390/INORGANICS11010028

    Article  CAS  Google Scholar 

  30. S.T. Briskeby, M. Tsypkin, R. Tunold, S. Sunde, Preparation of electrocatalysts by reduction of precursors with sodium citrate. RSC Adv. 4, 44185–44192 (2014). https://doi.org/10.1039/C4RA06639A

    Article  CAS  Google Scholar 

  31. S. Li, H. Xie, Q. Dong, S. Jing, T. Li, L. Xu, L. Hu, Synthesizing carbon-supported, high-loading, ultra-small Pt3Ni nanoparticles via tuning the surface electrostatic effect. Small Struct. 4, 2200176 (2023). https://doi.org/10.1002/SSTR.202200176

    Article  CAS  Google Scholar 

  32. G. Ma, X. Zhao, J. Wang, G. Qin, Z. Lu, X. Yu, L. Li, X. Zhang, X. Yang, Structural evolution of PtCu nanoframe for efficient oxygen reduction reactions. J. Electroanal. Chem. 922, 116756 (2022). https://doi.org/10.1016/J.JELECHEM.2022.116756

    Article  CAS  Google Scholar 

  33. B. Li, Y. Ren, C. Lv, F. Gao, X. Zhang, X. Yang, L. Li, Z. Lu, X. Yu, Synthesis of ultrathin-wall PtCu nanocages as efficient electrocatalyst toward oxygen reduction reactivity. Int. J. Hydrog. Energy 48, 16286–16293 (2023). https://doi.org/10.1016/J.IJHYDENE.2023.01.129

    Article  CAS  Google Scholar 

  34. H.J. Niu, H.Y. Chen, G.L. Wen, J.J. Feng, Q.L. Zhang, A.J. Wang, One-pot solvothermal synthesis of three-dimensional hollow PtCu alloyed dodecahedron nanoframes with excellent electrocatalytic performances for hydrogen evolution and oxygen reduction. J. Colloid Interface Sci. 539, 525–532 (2019). https://doi.org/10.1016/J.JCIS.2018.12.066

    Article  CAS  Google Scholar 

  35. F. Fievet, S. Ammar-Merah, R. Brayner, F. Chau, M. Giraud, F. Mammeri, J. Peron, J.Y. Piquemal, L. Sicard, G. Viau, The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem. Soc. Rev. 47, 5187–5233 (2018). https://doi.org/10.1039/C7CS00777A

    Article  CAS  Google Scholar 

  36. H. Yue, Y. Zhao, X. Ma, J. Gong, Ethylene glycol: properties, synthesis, and applications. Chem. Soc. Rev. 41, 4218–4244 (2012). https://doi.org/10.1039/C2CS15359A

    Article  CAS  Google Scholar 

  37. Z. Niu, Y. Li, Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 26, 72–83 (2014). https://doi.org/10.1021/CM4022479

    Article  CAS  Google Scholar 

  38. L. Lu, S. Zou, B. Fang, The critical impacts of ligands on heterogeneous nanocatalysis: a review. ACS Catal. 11, 6020–6058 (2021). https://doi.org/10.1021/ACSCATAL.1C00903

    Article  CAS  Google Scholar 

  39. H. Pu, H. Dai, T. Zhang, K. Dong, Y. Wang, Y. Deng, Metal nanoparticles with clean surface: the importance and progress. Curr. Opin. Electrochem. 32, 100927 (2022). https://doi.org/10.1016/J.COELEC.2021.100927

    Article  CAS  Google Scholar 

  40. I. Schrader, J. Warneke, S. Neumann, S. Grotheer, A.A. Swane, J.J.K. Kirkensgaard, M. Arenz, S. Kunz, Surface chemistry of “unprotected” nanoparticles: a spectroscopic investigation on colloidal particles. J. Phys. Chem. C 119, 17655–17661 (2015). https://doi.org/10.1021/ACS.JPCC.5B03863

    Article  CAS  Google Scholar 

  41. K.S. Ju, I.H. Jang, Y.A. Choe, S.C. Ri, H.T. Pak, S.O. Hong, Study on ethanol electro-oxidation over a carbon-supported Pt–Cu alloy catalyst by pinhole on-line electrochemical mass spectrometry. RSC Adv. 13, 448–455 (2022). https://doi.org/10.1039/D2RA06989J

    Article  Google Scholar 

  42. M. Kalyva, M.F. Sunding, A.E. Gunnæs, S. Diplas, E.A. Redekop, Correlation between surface chemistry and morphology of PtCu and Pt nanoparticles during oxidation-reduction cycle. Appl. Surf. Sci. 532, 147369 (2020). https://doi.org/10.1016/J.APSUSC.2020.147369

    Article  CAS  Google Scholar 

  43. H. El-Deeb, M. Bron, Microwave-assisted polyol synthesis of PtCu/carbon nanotube catalysts for electrocatalytic oxygen reduction. J. Power Sources 275, 893–900 (2015). https://doi.org/10.1016/J.JPOWSOUR.2014.11.060

    Article  CAS  Google Scholar 

  44. S.K. Cui, D.J. Guo, Microwave-assisted preparation of PtCu/C nanoalloys and their catalytic properties for oxygen reduction reaction. J. Alloys Compd. 874, 159869 (2021). https://doi.org/10.1016/J.JALLCOM.2021.159869

    Article  CAS  Google Scholar 

  45. X. Peng, D. Chen, X. Yang, D. Wang, M. Li, C.C. Tseng, R. Panneerselvam, X. Wang, W. Hu, J. Tian, Y. Zhao, Microwave-assisted synthesis of highly dispersed PtCu nanoparticles on three-dimensional nitrogen-doped graphene networks with remarkably enhanced methanol electrooxidation. ACS Appl. Mater. Interfaces 8, 33673–33680 (2016). https://doi.org/10.1021/ACSAMI.6B11800

    Article  CAS  Google Scholar 

  46. M.V. Danilenko, V.E. Guterman, K.O. Paperzh, A.A. Alekseenko, I.V. Pankov, CO effect on the dynamics of platinum nucleation/growth under the liquid-phase synthesis of Pt/C electrocatalysts. J. Electrochem. Soc. 169, 092501 (2022). https://doi.org/10.1149/1945-7111/AC8C02

    Article  CAS  Google Scholar 

  47. H.A. Jones, H.S. Taylor, The reduction of copper oxide by carbon monoxide and the catalytic oxidation of carbon monoxide in the presence of copper and copper oxide. J. Phys. Chem. 27, 623–651 (2002). https://doi.org/10.1021/J150232A002

    Article  Google Scholar 

  48. A.S. Pavlets, A.A. Alekseenko, N.Y. Tabachkova, O.I. Safronenko, A.Y. Nikulin, D.V. Alekseenko, V.E. Guterman, A novel strategy for the synthesis of Pt–Cu uneven nanoparticles as an efficient electrocatalyst toward oxygen reduction. Int. J. Hydrog. Energy 46, 5355–5368 (2021). https://doi.org/10.1016/J.IJHYDENE.2020.11.094

    Article  CAS  Google Scholar 

  49. A. Kuriganova, N. Faddeev, M. Gorshenkov, D. Kuznetsov, I. Leontyev, N. Smirnova, A comparison of “bottom-up” and “top-down” approaches to the synthesis of Pt/C electrocatalysts. Processes 8, 947 (2020). https://doi.org/10.3390/PR8080947

    Article  CAS  Google Scholar 

  50. V.V. Pryadchenko, V.V. Srabionyan, A.A. Kurzin, N.V. Bulat, D.B. Shemet, L.A. Avakyan, S.V. Belenov, V.A. Volochaev, I. Zizak, V.E. Guterman, L.A. Bugaev, Bimetallic PtCu core-shell nanoparticles in PtCu/C electrocatalysts: structural and electrochemical characterization. Appl. Catal. A (2016). https://doi.org/10.1016/j.apcata.2016.08.008

    Article  Google Scholar 

  51. A. Pavlets, A. Alekseenko, E. Kozhokar, I. Pankov, D. Alekseenko, V. Guterman, Efficient Pt-based nanostructured electrocatalysts for fuel cells: one-pot preparation, gradient structure, effect of alloying, electrochemical performance. Int. J. Hydrog. Energy (2023). https://doi.org/10.1016/J.IJHYDENE.2023.01.054

    Article  Google Scholar 

  52. I. Dutta, M.K. Carpenter, M.P. Balogh, J.M. Ziegelbauer, T.E. Moylan, M.H. Atwan, N.P. Irish, Electrochemical and structural study of a chemically dealloyed PtCu oxygen reduction catalyst. J. Phys. Chem. C 114, 16309–16320 (2010). https://doi.org/10.1021/JP106042Z

    Article  CAS  Google Scholar 

  53. J. Zhang, J. Ma, Y. Wan, J. Jiang, X.S. Zhao, Dendritic Pt–Cu bimetallic nanocrystals with a high electrocatalytic activity toward methanol oxidation. Mater. Chem. Phys. 132, 244–247 (2012). https://doi.org/10.1016/J.MATCHEMPHYS.2011.12.024

    Article  CAS  Google Scholar 

  54. M. Gatalo, P. Jovanovič, U. Petek, M. Šala, V.S. Šelih, F. Ruiz-Zepeda, M. Bele, N. Hodnik, M. Gaberšček, Comparison of Pt–Cu/C with benchmark Pt–Co/C: metal dissolution and their surface interactions. ACS Appl. Energy Mater. 2, 3131–3141 (2019). https://doi.org/10.1021/ACSAEM.8B02142

    Article  CAS  Google Scholar 

  55. P. Jovanovič, V.S. Šelih, M. Šala, S.B. Hočevar, A. Pavlišič, M. Gatalo, M. Bele, F. Ruiz-Zepeda, M. Čekada, N. Hodnik, M. Gaberšček, Electrochemical in-situ dissolution study of structurally ordered, disordered and gold doped PtCu3 nanoparticles on carbon composites. J. Power Sources 327, 675–680 (2016). https://doi.org/10.1016/J.JPOWSOUR.2016.07.112

    Article  Google Scholar 

  56. A.A. Topalov, S. Cherevko, A.R. Zeradjanin, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, Towards a comprehensive understanding of platinum dissolution in acidic media. Chem. Sci. 5, 631–638 (2013). https://doi.org/10.1039/C3SC52411F

    Article  Google Scholar 

  57. R.M. Mensharapov, D.D. Spasov, N.A. Ivanova, A.A. Zasypkina, S.A. Smirnov, S.A. Grigoriev, Screening of carbon-supported platinum electrocatalysts using frumkin adsorption isotherms. Inorganics (Basel) 11, 103 (2023). https://doi.org/10.3390/INORGANICS11030103/S1

    Article  CAS  Google Scholar 

  58. Y.Y. Rivera-Lugo, M.I. Salazar-Gastélum, D.M. López-Rosas, E.A. Reynoso-Soto, S. Pérez-Sicairos, S. Velraj, J.R. Flores-Hernández, R.M. Félix-Navarro, Effect of template, reaction time and platinum concentration in the synthesis of PtCu/CNT catalyst for PEMFC applications. Energy (2018). https://doi.org/10.1016/j.energy.2018.01.069

    Article  Google Scholar 

  59. L.L. Jiang, M. Zeng, C.Y. Wang, Z.H. Luo, H.Y. Li, Y. Yi, Pt-Ni alloy catalyst supported on carbon aerogel via one-step method for oxygen reduction reaction. J. Solid State Electrochem. 26, 481–490 (2021). https://doi.org/10.1007/S10008-021-05082-X

    Article  Google Scholar 

  60. DOE technical targets for polymer electrolyte membrane fuel cell components | Department of Energy, (n.d.). https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components. Accessed 30 Apr 2023

  61. X. Du, G. Liu, Y. Luo, J. Li, L. Ricardez-Sandoval, Theoretical insights into the oxygen reduction reaction on PtCu (1 1 1): effects of surface defect and acidic solvent. Appl. Surf. Sci. 570, 151195 (2021). https://doi.org/10.1016/J.APSUSC.2021.151195

    Article  CAS  Google Scholar 

  62. H. Duan, C. Xu, Nanoporous PtPd alloy electrocatalysts with high activity and stability toward oxygen reduction reaction. Electrochim. Acta 152, 417–424 (2015). https://doi.org/10.1016/J.ELECTACTA.2014.11.160

    Article  CAS  Google Scholar 

  63. K. Paperzh, A. Alekseenko, M. Danilenko, I. Pankov, V.E. Guterman, Advanced methods of controlling the morphology, activity, and durability of Pt/C electrocatalysts. ACS Appl. Energy Mater. 5, 9530–9541 (2022). https://doi.org/10.1021/ACSAEM.2C01151

    Article  CAS  Google Scholar 

  64. D.J.S. Sandbeck, N.M. Secher, M. Inaba, J. Quinson, J.E. Sørensen, J. Kibsgaard, A. Zana, F. Bizzotto, F.D. Speck, M.T.Y. Paul, A. Dworzak, C. Dosche, M. Oezaslan, I. Chorkendorff, M. Arenz, S. Cherevko, The dissolution dilemma for low Pt loading polymer electrolyte membrane fuel cell catalysts. J. Electrochem. Soc. 167, 164501 (2020). https://doi.org/10.1149/1945-7111/ABC767

    Article  CAS  Google Scholar 

  65. I.V. Pushkareva, A.S. Pushkarev, V.N. Kalinichenko, R.G. Chumakov, M.A. Soloviev, Y. Liang, P. Millet, S.A. Grigoriev, Reduced graphene oxide-supported Pt-based catalysts for PEM fuel cells with enhanced activity and stability. Catalysts 11, 256 (2021). https://doi.org/10.3390/CATAL11020256

    Article  CAS  Google Scholar 

  66. K. Shinozaki, J.W. Zack, R.M. Richards, B.S. Pivovar, S.S. Kocha, Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: I. Impact of impurities, measurement protocols and applied corrections. J. Electrochem. Soc. 162, F1144 (2015). https://doi.org/10.1149/2.1071509JES

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their special appreciation to the Shared Use Center “High-Resolution Transmission Electron Microscopy” (SFedU). The authors are grateful to Maltsev, A.V. for the support in translation and editing processes and the assistance in communication with the editorial board.

Funding

The study was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation (No. FENW-2023-0016).

Author information

Authors and Affiliations

Authors

Contributions

AP: methodology, investigation, data curation. AA: conceptualization, methodology, data curation, formal analysis, writing—original draft. IP: formal analysis, visualization, software. DA: methodology, formal analysis. AN: data curation, formal analysis. VG: funding acquisition, writing—review & editing.

Corresponding author

Correspondence to Angelina Pavlets.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7036 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlets, A., Alekseenko, A., Pankov, I. et al. Polyol process: Combined modification and assessment of morphological changes in PEMFC bimetallic catalysts at all stages of research. Journal of Materials Research 38, 4595–4608 (2023). https://doi.org/10.1557/s43578-023-01179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01179-3

Keywords

Navigation