Skip to main content
Log in

A simple and cost-effective synthesis of graphene oxide stabilized glucose-capped copper oxide nanoparticles and its antibacterial properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

A Correction to this article was published on 21 December 2023

This article has been updated

Abstract

A simple and cost-effective approach has been used to synthesize biocompatible nanocomposites of graphene oxide, glucose and copper oxide. Basically, three types of nanocomposites (i.e., Glucose-capped copper oxide nanoparticles, GO stabilized copper oxide nanoparticles and GO stabilized glucose-capped copper oxide nanoparticles) are synthesized at 35, 75, and 100°C. All the nanocomposites are characterized for their physical properties and studied for their antibacterial properties. Antibacterial testing against laboratory strains of Escherichia coli and Bacillus anthracis shows that all the nanocomposites synthesized at 35°C possess better antibacterial activities compared to other nanocomposites and GO. In this study, the order of antibacterial activity for synthesized nanocomposites observed is Cu/Glu/GO > Cu/Glu > Cu/GO, suggesting that the Cu/Glu/GO possess comparatively significant antibacterial properties owing to the synergistic effect of copper, glucose and GO. However, it should be further explored to be an alternative antibacterial agent to overcome antimicrobial resistance in near future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

Not applicable.

Change history

Abbreviations

AMR:

Antimicrobial resistance

Cu/Glu/GO:

GO stabilized glucose-capped copper oxide nanoparticles

Cu/Glu:

Glucose-capped copper oxide nanoparticles

Cu/GO:

GO stabilized copper oxide nanoparticles

Cu:

Copper

Cu2O:

Cuprous oxide

CuO:

Cupric oxide

Glu:

Glucose

GO:

Graphene oxide

NaOH:

Sodium hydroxide

rGO:

Reduced graphene oxide

ROS:

Reactive oxygen species

SAED:

Selected area electron diffraction

TEM:

Transmission electron microscopy

XRD:

X-ray diffraction

ZOI:

Zone of Inhibition

SD:

Standard deviation

References

  1. W. H. Hunt, Nanomaterials: nomenclature, novelty, and necessity, 2004. www.tms.org/pubs/journals/JOM/0410/Hunt

  2. R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112(4), 2373–2433 (2012). https://doi.org/10.1021/cr100449n

    Article  CAS  Google Scholar 

  3. I. Khan, K. Saeed, I. Khan, Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12(7), 908–931 (2019). https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  4. X.F. Zhang, Z.G. Liu, W. Shen, S. Gurunathan, Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17(9), 1534 (2016). https://doi.org/10.3390/ijms17091534

    Article  CAS  Google Scholar 

  5. K. Ganesan, V.K. Jothi, A. Natarajan, A. Rajaram, S. Ravichandran, S. Ramalingam, Green synthesis of copper oxide nanoparticles decorated with graphene oxide for anticancer activity and catalytic applications. Arab. J. Chem. 13(8), 6802–6814 (2020). https://doi.org/10.1016/j.arabjc.2020.06.033

    Article  CAS  Google Scholar 

  6. A. Jiménez-Rodríguez et al., Green synthesis of starch-capped Cu2O nanocubes and their application in the direct electrochemical detection of glucose. RSC Adv. 11(23), 13711–13721 (2021). https://doi.org/10.1039/d0ra10054d

    Article  CAS  Google Scholar 

  7. G.R. Rudramurthy, M.K. Swamy, U.R. Sinniah, A. Ghasemzadeh, Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21(7), 836 (2016). https://doi.org/10.3390/molecules21070836

    Article  CAS  Google Scholar 

  8. S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C 44, 278–284 (2014). https://doi.org/10.1016/j.msec.2014.08.031

    Article  CAS  Google Scholar 

  9. P. Kumar, P. Huo, R. Zhang, B. Liu, Antibacterial properties of graphene-based nanomaterials. Nanomaterials 9(5), 737 (2019). https://doi.org/10.3390/nano9050737

    Article  CAS  Google Scholar 

  10. E. Sánchez-López et al., Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 10(2), 292 (2020). https://doi.org/10.3390/nano10020292

    Article  CAS  Google Scholar 

  11. N.Y. Lee, W.C. Ko, P.R. Hsueh, Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. (2019). https://doi.org/10.3389/fphar.2019.01153

    Article  Google Scholar 

  12. H. Kotrange et al., Molecular sciences metal and metal oxide nanoparticle as a novel antibiotic carrier for the direct delivery of antibiotics. J. Mol. Sci (2021). https://doi.org/10.3390/ijms

    Article  Google Scholar 

  13. M.J. Hajipour et al., Antibacterial properties of nanoparticles. Trends Biotechnol. 30(10), 499–511 (2012). https://doi.org/10.1016/j.tibtech.2012.06.004

    Article  CAS  Google Scholar 

  14. L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017). https://doi.org/10.2147/IJN.S121956

    Article  CAS  Google Scholar 

  15. A. Brandelli, A.C. Ritter, F.F. Veras, Antimicrobial activities of metal nanoparticles, in Metal Nanoparticles in Pharma. ed. by M. Rai, R. Shegokar (Springer International Publishing, 2017), pp.337–363

    Chapter  Google Scholar 

  16. E. Albalghiti, L.M. Stabryla, L.M. Gilbertson, J.B. Zimmerman, Towards resolution of antibacterial mechanisms in metal and metal oxide nanomaterials: a meta-analysis of the influence of study design on mechanistic conclusions. Environ. Sci. Nano 8(1), 37–66 (2021). https://doi.org/10.1039/d0en00949k

    Article  CAS  Google Scholar 

  17. S. Shahzadi, N. Zafar, R. Sharif, Antibacterial activity of metallic nanoparticles. In Bacterial Pathogenesis and Antibacterial Control (InTech, 2018)

  18. O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Pérez, V.M.J. Pérez, The greener synthesis of nanoparticles. Trends Biotechnol. 31(4), 240–248 (2013). https://doi.org/10.1016/j.tibtech.2013.01.003

    Article  CAS  Google Scholar 

  19. U.S. Shenoy, A.N. Shetty, Simple glucose reduction route for one-step synthesis of copper nanofluids. Appl. Nanosci 4(1), 47–54 (2014). https://doi.org/10.1007/s13204-012-0169-6

    Article  CAS  Google Scholar 

  20. A. Khan, A. Rashid, R. Younas, R. Chong, A chemical reduction approach to the synthesis of copper nanoparticles. Int Nano Lett 6(1), 21–26 (2016). https://doi.org/10.1007/s40089-015-0163-6

    Article  CAS  Google Scholar 

  21. G. Eka Putri, Y. Rilda, S. Syukri, A. Labanni, S. Arief, Highly antimicrobial activity of cerium oxide nanoparticles synthesized using Moringa oleifera leaf extract by a rapid green precipitation method. J. Mater. Res. Technol. 15, 2355–2364 (2021). https://doi.org/10.1016/j.jmrt.2021.09.075

    Article  CAS  Google Scholar 

  22. L. Xu, Y.Y. Wang, J. Huang, C.Y. Chen, Z.X. Wang, H. Xie, Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics 10(20), 8996–9031 (2020). https://doi.org/10.7150/thno.45413

    Article  CAS  Google Scholar 

  23. Z. Ferdous, A. Nemmar, Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int. J. Mol. Sci 21(7), 2375 (2020). https://doi.org/10.3390/ijms21072375

    Article  CAS  Google Scholar 

  24. J. Singh, T. Dutta, K.H. Kim, M. Rawat, P. Samddar, P. Kumar, ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. (2018). https://doi.org/10.1186/s12951-018-0408-4

    Article  Google Scholar 

  25. G. Eka Putri, F. Rahayu Gusti, A. Novita Sary, R. Zainul, Synthesis of silver nanoparticles used chemical reduction method by glucose as reducing agent. J. Phys. Conf. Ser. (2019). https://doi.org/10.1088/1742-6596/1317/1/012027

    Article  Google Scholar 

  26. L. Castillo-Henríquez, K. Alfaro-Aguilar, J. Ugalde-álvarez, L. Vega-Fernández, G.M. de Oca-Vásquez, J.R. Vega-Baudrit, Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials 10(9), 1–24 (2020). https://doi.org/10.3390/nano10091763

    Article  CAS  Google Scholar 

  27. P.K. Dikshit et al., Green synthesis of metallic nanoparticles: applications and limitations. Catalysts 11(8), 902 (2021). https://doi.org/10.3390/catal11080902

    Article  CAS  Google Scholar 

  28. A.K. Sidhu, N. Verma, P. Kaushal, Role of biogenic capping agents in the synthesis of metallic nanoparticles and evaluation of their therapeutic potential. Front. Nanotechnol. (2022). https://doi.org/10.3389/fnano.2021.801620

    Article  Google Scholar 

  29. C. Liao, Y. Li, S.C. Tjong, Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci. 19(11), 3564 (2018). https://doi.org/10.3390/ijms19113564

    Article  CAS  Google Scholar 

  30. W. Hu et al., Graphene-based antibacterial paper. ACS Nano 4(7), 4317–4323 (2010). https://doi.org/10.1021/nn101097v

    Article  CAS  Google Scholar 

  31. M.D. Rojas-Andrade, G. Chata, D. Rouholiman, J. Liu, C. Saltikov, S. Chen, Antibacterial mechanisms of graphene-based composite nanomaterials. Nanoscale 9(3), 994–1006 (2017). https://doi.org/10.1039/c6nr08733g

    Article  CAS  Google Scholar 

  32. S. Jaworski et al., Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent. Nanoscale Res Lett (2018). https://doi.org/10.1186/s11671-018-2533-2

    Article  Google Scholar 

  33. A. Ahmadi Shadmehri, F. Namvar, H. Miri, P. Yaghmaei, M. Nakhaei Moghaddam, Assessment of antioxidant and antibacterial activities of Zinc Oxide nanoparticles, graphene and graphene decorated by zinc oxide nanoparticles. Int. J. Nano Dimension 10(4), 350–358 (2019)

    Google Scholar 

  34. G. Darabdhara, M.R. Das, S.P. Singh, A.K. Rengan, S. Szunerits, R. Boukherroub, Ag and Au nanoparticles/reduced graphene oxide composite materials: synthesis and application in diagnostics and therapeutics. Adv Colloid Interface Sci (2019). https://doi.org/10.1016/j.cis.2019.101991

    Article  Google Scholar 

  35. T.T.T. Vi, S.R. Kumar, Y.T. Huang, D.W. Chen, Y.K. Liu, S.J. Lue, Size-dependent antibacterial activity of silver nanoparticle-loaded graphene oxide nanosheets. Nanomaterials 10(6), 1–18 (2020). https://doi.org/10.3390/nano10061207

    Article  CAS  Google Scholar 

  36. A.M. Díez-Pascual, Antibacterial action of nanoparticle loaded nanocomposites based on graphene and its derivatives: a mini-review. Int. J. Mol. Sci. 21(10), 3563 (2020). https://doi.org/10.3390/ijms21103563

    Article  CAS  Google Scholar 

  37. H. Mohammed et al., Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials: a scope review. Front. Bioeng. Biotechnol. (2020). https://doi.org/10.3389/fbioe.2020.00465

    Article  Google Scholar 

  38. F. Valentini et al., Functionalized graphene derivatives: antibacterial properties and cytotoxicity. J Nanomater (2019). https://doi.org/10.1155/2019/2752539

    Article  Google Scholar 

  39. M. Kooti, M. Kooti, L. Matouri, Fabrication of nanosized cuprous oxide using Fehling’s solution, 2010. https://www.researchgate.net/publication/259323045

  40. R.D. Simoni, R.L. Hill, M. Vaughan, Benedict’s solution, a reagent for measuring reducing sugars: the clinical chemistry of Stanley R. Benedict. J. Biol. Chem. 277(16), e5–e6 (2002). https://doi.org/10.1016/s0021-9258(19)61050-1

    Article  CAS  Google Scholar 

  41. P. Narasaiah, B.K. Mandal, N.C. Sarada, Biosynthesis of copper oxide nanoparticles from Drypetes sepiaria Leaf extract and their catalytic activity to dye degradation. IOP Conf. Ser. (2017). https://doi.org/10.1088/1757-899X/263/2/022012

    Article  Google Scholar 

  42. N. Zafar and S. Shamaila, Synthesis of copper nanoparticles by chemical reduction method biomedical application of metallic nanoparticles view project. doi: https://doi.org/10.13140/RG.2.1.1085.0643.

  43. B. Li, Y. Li, Y. Zhao, L. Sun, Shape-controlled synthesis of Cu2O nano/microcrystals and their antibacterial activity. J. Phys. Chem. Solids 74(12), 1842–1847 (2013). https://doi.org/10.1016/j.jpcs.2013.07.017

    Article  CAS  Google Scholar 

  44. A. Chinthakuntla and K. Venkateswara Rao, “Structural analysis of CuO nanomaterials prepared by novel microwave assisted method effects of temperature, deposition time and catalyst loading on the synthesis of carbon nanotubes in a fixed bed reactor view project light rare earth/ lanthanide (Ce & Sm) oxides decorated on nano-carbon for sensing applications view project, 2014. www.jamonline.in

  45. N. Bouazizi, R. Bargougui, A. Oueslati, R. Benslama, Effect of synthesis time on structural, optical and electrical properties of CuO nanoparticles synthesized by reflux condensation method. Adv. Mater Lett 6(2), 158–164 (2015). https://doi.org/10.5185/amlett.2015.5656

    Article  CAS  Google Scholar 

  46. D. Zhang, X.L. Ma, Y. Gu, H. Huang, G.W. Zhang, Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.00799

    Article  Google Scholar 

  47. D. Wojcieszak et al., Thermal oxidation impact on the optoelectronic and hydrogen sensing properties of p-type copper oxide thin films. Mater. Res. Bull. (2022). https://doi.org/10.1016/j.materresbull.2021.111646

    Article  Google Scholar 

  48. D. Mardiansyah et al., Effect of temperature on the oxidation of Cu nanowires and development of an easy to produce, oxidation-resistant transparent conducting electrode using a PEDOT:PSS coating. Sci Rep (2018). https://doi.org/10.1038/s41598-018-28744-9

    Article  Google Scholar 

  49. P.P.A. Jose, M.S. Kala, A.V. Joseph, N. Kalarikkal, S. Thomas, Reduced graphene oxide/silver nanohybrid as a multifunctional material for antibacterial, anticancer, and SERS applications. Appl. Phys. A Mater. Sci. Process. (2020). https://doi.org/10.1007/s00339-019-3237-x

    Article  Google Scholar 

  50. J.-C. Yu, G.Z. Fu, S. Wei, C.-W. Ge, W.-S. Li, Shape-controllable and versatile synthesis of copper nanocrystals with amino acids as capping agents. R. Soc. Chem. (2014). https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  51. S. Sukumar, A. Rudrasenan, D. Padmanabhan Nambiar, Green-synthesized rice-shaped copper oxide nanoparticles using caesalpinia bonducella seed extract and their applications. ACS Omega 5(2), 1040–1051 (2020). https://doi.org/10.1021/acsomega.9b02857

    Article  CAS  Google Scholar 

  52. N.P. Sibiya, M.J. Moloto, Shape control of silver selenide nanoparticles using green capping molecules. Green Process. Synth. 6(2), 183–188 (2017). https://doi.org/10.1515/gps-2016-0057

    Article  CAS  Google Scholar 

  53. H. Liu, H. Zhang, J. Wang, J. Wei, Effect of temperature on the size of biosynthesized silver nanoparticle: deep insight into microscopic kinetics analysis. Arab. J. Chem. 13(1), 1011–1019 (2020). https://doi.org/10.1016/j.arabjc.2017.09.004

    Article  CAS  Google Scholar 

  54. V. Harnchana, S. Chaiyachad, S. Pimanpang, C. Saiyasombat, P. Srepusharawoot, V. Amornkitbamrung, Hierarchical Fe3O4-reduced graphene oxide nanocomposite grown on NaCl crystals for triiodide reduction in dye-sensitized solar cells. Sci. Rep. (2019). https://doi.org/10.1038/s41598-018-38050-z

    Article  Google Scholar 

  55. K. Spilarewicz-Stanek, A. Kisielewska, J. Ginter, K. Bałuszyńska, I. Piwoński, Elucidation of the function of oxygen moieties on graphene oxide and reduced graphene oxide in the nucleation and growth of silver nanoparticles. RSC Adv. 6(65), 60056–60067 (2016). https://doi.org/10.1039/c6ra10483e

    Article  CAS  Google Scholar 

  56. X.C. Jiang, W.M. Chen, C.Y. Chen, S.X. Xiong, A.B. Yu, Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res Lett 6(1), 1–9 (2011). https://doi.org/10.1007/s11671-010-9780-1

    Article  CAS  Google Scholar 

  57. S. Panda, T.K. Rout, A.D. Prusty, P.M. Ajayan, S. Nayak, Electron transfer directed antibacterial properties of graphene oxide on metals. Adv. Mater. 30(7), 1702149 (2018). https://doi.org/10.1002/adma.201702149

    Article  CAS  Google Scholar 

  58. X. Jiao, Y. Qiu, L. Zhang, X. Zhang, Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees. RSC Adv 7(82), 52337–52344 (2017). https://doi.org/10.1039/c7ra10809e

    Article  CAS  Google Scholar 

  59. D.Y. Kim et al., Self-healing reduced graphene oxide films by supersonic kinetic spraying. Adv. Funct. Mater. 24(31), 4986–4995 (2014). https://doi.org/10.1002/adfm.201400732

    Article  CAS  Google Scholar 

  60. J.M. Wrogemann et al., Impact of degree of graphitization, surface properties and particle size distribution on electrochemical performance of carbon anodes for potassium-ion batteries. Batter Supercaps (2022). https://doi.org/10.1002/batt.202200045

    Article  Google Scholar 

  61. N.M.S. Hidayah et al., Comparison on graphite, graphene oxide and reduced graphene oxide: synthesis and characterization. AIP Conf. Proc (2017). https://doi.org/10.1063/1.5005764

    Article  Google Scholar 

  62. S. Meghana, P. Kabra, S. Chakraborty, N. Padmavathy, Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv 5(16), 12293–12299 (2015). https://doi.org/10.1039/c4ra12163e

    Article  CAS  Google Scholar 

  63. Y. Li, D. Yang, J. Cui, Graphene oxide loaded with copper oxide nanoparticles as an antibacterial agent against: pseudomonas syringae pv. tomato. RSC Adv 7(62), 38853–38860 (2017). https://doi.org/10.1039/c7ra05520j

    Article  CAS  Google Scholar 

  64. Y.N. Slavin, J. Asnis, U.O. Häfeli, H. Bach, Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. (2017). https://doi.org/10.1186/s12951-017-0308-z

    Article  Google Scholar 

  65. D. Longano, N. Ditaranto, L. Sabbatini, L. Torsi, N. Cioffi, Synthesis and antimicrobial activity of copper nanomaterials, in Nano-Antimicrobials: Progress and Prospects. ed. by N. Cioffi, M. Rai (Springer-Verlag, Berlin Heidelberg, 2014), pp.85–117

    Google Scholar 

  66. A.M. El Badawy, R.G. Silva, B. Morris, K.G. Scheckel, M.T. Suidan, T.M. Tolaymat, Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1), 283–287 (2011). https://doi.org/10.1021/es1034188

    Article  CAS  Google Scholar 

  67. S. Verma et al., Anti-IL8/AuNPs-rGO/ITO as an immunosensing platform for noninvasive electrochemical detection of oral cancer. ACS Appl. Mater. Interfaces 9(33), 27462–27474 (2017). https://doi.org/10.1021/acsami.7b06839

    Article  CAS  Google Scholar 

  68. W.W. Liu, B.Y. Xia, X.X. Wang, J.N. Wang, Exfoliation and dispersion of graphene in ethanol-water mixtures. Front. Mater. Sci. 6(2), 176–182 (2012). https://doi.org/10.1007/s11706-012-0166-4

    Article  Google Scholar 

  69. A.W. Bauer et al, Technical section antibiotic susceptibility testing by a standardized single disk method, 1966. https://academic.oup.com/ajcp/article-abstract/45/4_ts/493/4821085

  70. M. Taran, M. Rad, M. Alavi, Antibacterial activity of copper oxide (CuO) nanoparticles biosynthesized by bacillus sp. FU4: optimization of experiment design. Pharm. Sci. 23(3), 198–206 (2017). https://doi.org/10.15171/PS.2017.30

    Article  Google Scholar 

  71. R.S. Shinde et al., Design, fabrication, antitubercular, antibacterial, antifungal and antioxidant study of silver doped ZnO and CuO nano candidates: a comparative pharmacological study. Curr. Res. Green Sustain. Chem. (2021). https://doi.org/10.1016/j.crgsc.2021.100138

    Article  Google Scholar 

  72. E.D. Solorzano-Ojeda et al., Effect of ionic liquid on graphene decorated with copper nanostructure dispersion towards silicon/graphene/copper composites with enhanced thermal, electrical and antimicrobial properties. Iran. Polym. J. 30(12), 1339–1349 (2021). https://doi.org/10.1007/s13726-021-00980-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AS is thankful to Advanced Instrumentation Research Facility, Jawaharlal Nehru University, and New Delhi, India for their XRD, TEM, and Raman facilities. AS and HRK acknowledge the facilities and support provided by the School of Biotechnology, Jawaharlal Nehru University, New Delhi.

Funding

The work of AS was supported by University Grant Commission (UGC), Grant Number F.15-1/2016-17/PDFWM-2015-17-UTT-33566 (SA-II). This work was supported by UGC BSR Research Start-Up Grant, Grant Number F.30–473/2019(BSR).

Author information

Authors and Affiliations

Authors

Contributions

AS and SK (Sugandha Kashyap) together planned and designed the research work. AG (Akanksha Gautam), NC, VD, and SK (Shivani Kaushik) performed experimental work and analyzed the results. AS, AG (Akanksha Gautam), SV and HD Writing-Original Draft Preparation. AS and HRK reviewing, and final editing the manuscript. HRK, AG (Arkaja Goswami) and SP read and approved the final manuscript.

Corresponding author

Correspondence to Hemant R. Kushwaha.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose the work reports in this paper.

Ethical approval

Not applicable.

Consent to participate

All authors have given their consent to participate.

Consent for publication

All authors have given their consent to publish their work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article was updated to correct affiliation 4 to Department of Genetics and Plant Breeding, School of Agricultural Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Gautam, A., Chauhan, N. et al. A simple and cost-effective synthesis of graphene oxide stabilized glucose-capped copper oxide nanoparticles and its antibacterial properties. Journal of Materials Research 38, 3980–3994 (2023). https://doi.org/10.1557/s43578-023-01115-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01115-5

Keywords

Navigation