Skip to main content
Log in

Sample size effect on creep in bending: An interplay between strain gradient and surface proximity effects

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Miniature cantilevers are associated with amplification in strain gradient and dislocation recovery. These contrasting phenomena interplay to impart strengthening via the injection of geometrically necessary dislocations because of strain gradients and softening due to the surface proximity effect. In this work, creep studies on Al cantilevers of thicknesses ranging from 0.070 to 7 mm demonstrate this interplay. The 2D strain field and dislocation substructure were examined to understand the steady-state creep response in miniaturized cantilevers. The average creep response of the cantilever strengthens with decreasing cantilever thickness; however, regimes of hardening, softening, and bulk-like behavior were observed while traveling along the length of the cantilever. Consistently, refinement in the steady-state dislocation substructure was observed in the regions of large strain gradients. The locations in a miniaturized cantilever with insignificant strain gradients registered surface proximity effect-induced enhanced creep rates. An analytical model has been developed to describe the strain gradient-surface proximity interplay.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

Notes

  1. For Al, a uniaxial sample with the thickness ≥ 2 mm can be considered as bulk-sized sample [9, 29].

  2. If a bending creep experiment is performed at \(\sigma_{max} < \sigma_{YS}\), where \(\sigma_{max}\) and \(\sigma_{YS}\) are the maximum stress in the cantilever at any time and the yield strength of the material, respectively, then the stress-state, σ, at the stress-invariant points can be given by \(\sigma = My/I\), where M and I are the moment and area inertia, respectively [6].

  3. GND density was calculated by EDAX OIM EBSD software using the default G.N.D. dislocation density tensor (Nye tensor).

  4. This estimate is based on the highest value of the strain gradient prevalent in the bulk-sized cantilevers (i.e., h ≥ 2.5 mm) at a strain of 5% (which is well inside the steady-state creep regime at the stress and temperature range used in this study).

  5. Euler- Bernoulli cantilevers have a length to thickness ratio, i.e., h/L, of ≥ 6, which allows neglecting the shear stresses in comparison to normal or bending stress along the length of the cantilever [3, 4]. The cantilevers in this work are designed to have chamfers on all four sides, which precludes stress concentration at the fixed-end [6, 7], and ensures applicability of the standard beam equations to obtain stress–strain relationships.

  6. Rust-Oleum is a commercial high temperature spray paint manufactured by Rust-Oleum Global, U.S.A.

References

  1. J.-P. Poirier, Creep of crystals (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  2. M.E. Kassner, Fundamentals of creep in metals and alloys. Elsevier (2015). https://doi.org/10.1016/C2012-0-06071-1

    Article  Google Scholar 

  3. S.I.A. Jalali, P. Kumar, V. Jayaram, High throughput determination of creep parameters using cantilever bending: part I—steady-state. J. Mater. Res. 35, 353–361 (2020). https://doi.org/10.1557/jmr.2020.36

    Article  CAS  Google Scholar 

  4. S.I.A. Jalali, P. Kumar, V. Jayaram, High throughput determination of creep parameters using cantilever bending: part II—primary and steady-state through uniaxial equivalency. J. Mater. Res. 35, 362–371 (2020)

    Article  Google Scholar 

  5. ASTM E139-11, Standard test methods for conducting creep, creep-rupture, and stress-rupture tests of metallic materials (ASTM International, West Conshohocken, 2018), p.2018

    Google Scholar 

  6. S.I.A. Jalali, P. Kumar, V. Jayaram, Creep of metallic materials in bending. JOM 71, 3563–3583 (2019). https://doi.org/10.1007/s11837-019-03707-1

    Article  Google Scholar 

  7. SIA Jalali Evaluation of Power-Law Creep in Bending, IISc Bangalore, 2020. http://etd.iisc.ac.in/handle/2005/4547

  8. S.I.A. Jalali, P. Kumar, V. Jayaram, Microstructural equivalence between bending and uniaxial creep. Scr. Mater. 186, 99–103 (2020). https://doi.org/10.1016/j.scriptamat.2020.04.033

    Article  CAS  Google Scholar 

  9. S.I.A. Jalali, V. Jayaram, P. Kumar, Creep micromechanics in meso-length scale samples. Acta Mater. 205, 1–32 (2021). https://doi.org/10.1016/j.actamat.2020.116535

    Article  CAS  Google Scholar 

  10. S.I.A. Jalali, P. Kumar, V. Jayaram, Customized high-temperature bending with DIC for high-throughput determination of creep parameters: technique instrumentation, and optimization. Jom 72, 4522–4538 (2020). https://doi.org/10.1007/s11837-020-04445-5

    Article  Google Scholar 

  11. T.H. Hyde, W. Sun, J.A. Williams, Requirements for and use of miniature test specimens to provide mechanical and creep properties of materials: a review. Int. Mater. Rev. 52, 213–255 (2007). https://doi.org/10.1179/174328007X160317

    Article  CAS  Google Scholar 

  12. N.S. Cheruvu, K.S. Chan, R. Viswanathan, Evaluation, degradation and life assessment of coatings for land based combustion turbines. Energy Mater. 1, 33–47 (2013). https://doi.org/10.1179/174892306X99705

    Article  CAS  Google Scholar 

  13. MFM Costa, V Teixeira (2011) Assessment of residual stress on thin films by laser microtopography. 8011:281–287 https://doi.org/10.1117/12.902212

  14. C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider, E. Arzt, Size effect on strength and strain hardening of small-scale [1 1 1] nickel compression pillars. Mater. Sci. Eng. A 489, 319–329 (2008). https://doi.org/10.1016/J.MSEA.2007.12.038

    Article  Google Scholar 

  15. C. Motz, D. Weygand, J. Senger, P. Gumbsch, Micro-bending tests: A comparison between three-dimensional discrete dislocation dynamics simulations and experiments. Acta Mater. 56, 1942–1955 (2008). https://doi.org/10.1016/J.ACTAMAT.2007.12.053

    Article  CAS  Google Scholar 

  16. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity : theory and experiment. Acta Metall. 42, 475–487 (1994)

    Article  CAS  Google Scholar 

  17. N.I. Tymiak, D.E. Kramer, D.F. Bahr, T.J. Wyrobek, W.W. Gerberich, Plastic strain and strain gradients at very small indentation depths. Acta Mater. 49, 1021–1034 (2001). https://doi.org/10.1016/S1359-6454(00)00378-5

    Article  CAS  Google Scholar 

  18. N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997). https://doi.org/10.1016/S0065-2156(08)70388-0

    Article  Google Scholar 

  19. N.A. Fleck, J.R. Willis, A mathematical basis for strain-gradient plasticity theory—Part I: Scalar plastic multiplier. J. Mech. Phys. Solids. 57, 161–177 (2009). https://doi.org/10.1016/j.jmps.2008.09.010

    Article  Google Scholar 

  20. N.A. Fleck, J.W. Hutchinson, A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids. 41, 1825–1857 (1993). https://doi.org/10.1016/0022-5096(93)90072-N

    Article  Google Scholar 

  21. J. Rafael Velayarce, C. Motz, Effect of sample size and crystal orientation on the fatigue behaviour of single crystalline microbeams. Materials (Basel) 13, 741 (2020). https://doi.org/10.3390/ma13030741

    Article  CAS  Google Scholar 

  22. Y. Huang, S. Qu, K.C. Hwang, M. Li, H. Gao, A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 20, 753–782 (2004). https://doi.org/10.1016/j.ijplas.2003.08.002

    Article  Google Scholar 

  23. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998). https://doi.org/10.1016/S0022-5096(97)00086-0

    Article  CAS  Google Scholar 

  24. J. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953). https://doi.org/10.1016/0001-6160(53)90054-6

    Article  CAS  Google Scholar 

  25. J.A. El-Awady, M.D. Uchic, P.A. Shade, S.-L. Kim, S.I. Rao, D.M. Dimiduk, C. Woodward, Pre-straining effects on the power-law scaling of size-dependent strengthening in Ni single crystals. Scr. Mater. 68, 207–210 (2013). https://doi.org/10.1016/j.scriptamat.2012.10.035

    Article  CAS  Google Scholar 

  26. J.A. El-Awady, Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat. Commun. 6, 5926 (2015). https://doi.org/10.1038/ncomms6926

    Article  Google Scholar 

  27. J.S. Stölken, A.G. Evans, A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998). https://doi.org/10.1016/S1359-6454(98)00153-0

    Article  Google Scholar 

  28. A.G. Evans, J.W. Hutchinson, A critical assessment of theories of strain gradient plasticity. Acta Mater. 57, 1675–1688 (2009). https://doi.org/10.1016/J.ACTAMAT.2008.12.012

    Article  CAS  Google Scholar 

  29. T.H. Hyde, W. Sun, Some considerations on specimen types for small sample creep tests. Mater. High Temp. 27, 157–165 (2010). https://doi.org/10.3184/096034010X12801645220736

    Article  CAS  Google Scholar 

  30. T.H. Hyde, C.J. Hyde, W. Sun, Theoretical basis and practical aspects of small specimen creep testing. J. Strain Anal. Eng. Des. 48, 112–125 (2013). https://doi.org/10.1177/0309324712463299

    Article  Google Scholar 

  31. T.H. Hyde, W. Sun, C.J. Hyde, An overview of small specimen creep testing, in Advanced materials modelling for structures. ed. by S. Kruch, H. Altenbach (Springer, Berlin, 2013), pp.201–216

    Chapter  Google Scholar 

  32. W. Sun, W. Wen, J. Lu, A.A. Becker, Determining full stage creep properties from miniature specimen creep test. Int. J. Mater. Metall. Eng. 12, 551–555 (2018)

    Google Scholar 

  33. Y. Zheng, W. Sun, An inverse approach for determining creep properties from a miniature thin plate specimen under bending. Int. J. Aerosp. Mech. Eng. 9, 1294–1300 (2015). https://doi.org/10.5281/ZENODO.1107846

    Article  Google Scholar 

  34. S.P. Iliev, X. Chen, M.V. Pathan, V.L. Tagarielli, Measurements of the mechanical response of Indium and of its size dependence in bending and indentation. Mater. Sci. Eng. A 683, 244–251 (2017). https://doi.org/10.1016/J.MSEA.2016.12.017

    Article  CAS  Google Scholar 

  35. M. Kassner, Taylor hardening in five-power-law creep of metals and class M alloys. Acta Mater. 52, 1–9 (2004). https://doi.org/10.1016/J.ACTAMAT.2003.08.019

    Article  CAS  Google Scholar 

  36. S.M. Keralavarma, T. Cagin, A. Arsenlis, A.A. Benzerga, Power-law creep from discrete dislocation dynamics. Phys. Rev. Lett. 109, 265504 (2012). https://doi.org/10.1103/PHYSREVLETT.109.265504/FIGURES/5/MEDIUM

    Article  Google Scholar 

  37. S.M. Keralavarma, W.A. Curtin, Strain hardening in 2D discrete dislocation dynamics simulations: A new ‘2.5D’ algorithm. J. Mech. Phys. Solids 95, 132–146 (2016). https://doi.org/10.1016/J.JMPS.2016.05.028

    Article  Google Scholar 

  38. F. Boioli, B. Devincre, M. Fivel, Discrete dislocation dynamics, nickel base single cryst. Across Length Scales (2022). https://doi.org/10.1016/B978-0-12-819357-0.00021-4

    Article  Google Scholar 

  39. B. Cassenti, A. Staroselsky, The effect of thickness on the creep response of thin-wall single crystal components. Mater. Sci. Eng. A 508, 183–189 (2009). https://doi.org/10.1016/j.msea.2008.12.051

    Article  CAS  Google Scholar 

  40. H.J. Frost, M.F. Ashby, Deformation-mechanism maps : the plasticity and creep of metals and ceramics (Pergamon Press, Oxford, 1982)

    Google Scholar 

  41. H Huang (1998) Mechanical properties of free-standing polycrystalline metallic thin films and multilayers, Harvard University. https://www.researchgate.net/publication/252936963_Mechanical_properties_of_free-standing_polycrystalline_metallic_thin_films_and_multilayers Accessed 3 Dec 2019

  42. V. Seetharaman, A.D. Cetel, Thickness debit in creep properties of PWA 1484. Proc. Int. Symp. Superalloys (2004). https://doi.org/10.7449/2004/superalloys_2004_207_214

    Article  Google Scholar 

  43. T. Nitta, G. Itoh, Effects of specimen thickness and grain size on creep deformation of aluminum alloy foils. Nippon Kinzoku Gakkaishi/Journal Japan Inst. Met. 63, 196–200 (1999). https://doi.org/10.2320/jinstmet1952.63.2_196

    Article  CAS  Google Scholar 

  44. A. Ueno, N. Takami, R. Sato, Study on establishing creep testing method using miniature specimen of lead free solders 17th Eur Conf Fract. 2008 Multilevel Approach to Fract Mater. Components Struct. 2(2008), 1120–1127 (2008)

    Google Scholar 

  45. Kalkman AJ, Verbruggen AH, Janssen GCAM (1999) Stress relaxation and creep in free-standing thin Al films studied using a bulge tester. pp. 265–270. https://doi.org/10.1063/1.59915

  46. R. Venkatraman, J.C. Bravman, Separation of film thickness and grain boundary strengthening effects in Al thin films on Si. J. Mater. Res. 7, 2040–2048 (1992). https://doi.org/10.1557/JMR.1992.2040

    Article  CAS  Google Scholar 

  47. J.R. Greer, W.C. Oliver, W.D. Nix, Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821–1830 (2005). https://doi.org/10.1016/J.ACTAMAT.2004.12.031

    Article  CAS  Google Scholar 

  48. F. Hijazi, J. Kar, A.H.V. Pavan, K. Singh, P. Kumar, V. Jayaram, Application of bending creep for examining effect of service conditions on creep response of steel. Mater. Sci. Eng. A 766, 138398 (2019). https://doi.org/10.1016/j.msea.2019.138398

    Article  CAS  Google Scholar 

  49. S. Straub, W. Blum, Does the “natural” third power, law of steady state creep hold for pure aluminum? Scr. Mater. 24, 1837–1842 (1990)

    Article  CAS  Google Scholar 

  50. H.J. Tapsell, A.E. Johnson, An investigation of the nature of creep under stresses produced by pure flexure. Mon. J. Inst. Met. 58, 387–405 (1935)

    Google Scholar 

  51. G.H. MacCullough, An experimental and analytical investigation of creep in bending. J. Appl. Mech. 1, 55–60 (1933)

    Article  Google Scholar 

  52. E. Husser, S. Bargmann, The role of geometrically necessary dislocations in cantilever beam bending experiments of single crystals. Materials (Basel) 10, 1–24 (2017). https://doi.org/10.3390/ma10030289

    Article  CAS  Google Scholar 

  53. N.A. Fleck, J.W. Hutchinson, A reformulation of strain gradient plasticity. J. Mech. Phys. Solids. 49, 2245–2271 (2001). https://doi.org/10.1016/S0022-5096(01)00049-7

    Article  Google Scholar 

  54. A. Arsenlis, D. Parks, Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater. 47, 1597–1611 (1999). https://doi.org/10.1016/S1359-6454(99)00020-8

    Article  CAS  Google Scholar 

  55. RS Varada (1995) Modeling the role of dislocation substructure during class m and exponential creep, In: Natl. Aeronaut. Sp. Adm. 1995, National Aeronautics and Space Administration. https://books.google.com/books/about/Modeling_the_Role_of_Dislocation_Substru.html?id=faM3AQAAMAAJ Accessed 4 Dec 2021

  56. O.D. Sherby, H.R. Klundt, A.K. Miller, Flow stress, subgrain size, and subgrain stability at elevated temperature. Metall. Trans. A 8A, 843–850 (1977)

    Article  CAS  Google Scholar 

  57. Y. Yang, S.Y. Wang, B. Xiang, S. Yin, T.C. Pekin, X. Li, R. Zhang, K. Yano, D. Hwang, M. Asta, C. Grigoropoulos, F.I. Allen, A.M. Minor, Evaluating the effects of pillar shape and gallium ion beam damage on the mechanical properties of single crystal aluminum nanopillars. J. Mater. Res. 36, 2515–2528 (2021). https://doi.org/10.1557/S43578-021-00125-5/FIGURES/8

    Article  CAS  Google Scholar 

  58. P. Shewmon, Diffusion equations, in Diffus Solids. ed. by P. Shewmon (Springer International Publishing, Cham, 2016), pp.9–51

    Chapter  Google Scholar 

  59. O.D. Sherby, J.L. Lytton, J.E. Dorn, Activation energies for creep of high-purity aluminum. Acta Metall. 5, 219–227 (1957)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Aeronautical Research and Development Board, India (ARDB 0242), and the Ministries of Human Resource Development and of Power, Government of India (IMPRINT 0009) for financially supporting this work. The authors also thank Anton-Paar and Bruker for extending the courtesy to use their facilities to conduct a part of this work. The use of scanning electron microscopy facilities from the Advanced Facility for Microscopy and Microanalysis (AFMM) at the Indian Institute of Science, Bangalore, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali, S.I.A., Bhowmick, S., Jayaram, V. et al. Sample size effect on creep in bending: An interplay between strain gradient and surface proximity effects. Journal of Materials Research 38, 3059–3077 (2023). https://doi.org/10.1557/s43578-023-01026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01026-5

Keywords

Navigation