Skip to main content
Log in

Electroluminescence, UV sensing, and pressure-induced conductance of Li+/Al3+ modified NiO: theoretical/experimental insights

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Sol–gel prepared doped NiO have been investigated. The dopant Al3+ is smaller in size but has a higher valence state than the host cation Ni2+. Hence, it induces an oxygen-rich lattice. The latent oxygen vacancies are annihilated and oxygen interstitials are created. Al3+ is smaller in size than Ni2+, promotes a tendency to reduce the extra O-content introduced by the higher charged Al3+ substitute ions. Such complex combinations of ions may affect the electronic affinity of the host ions and thereby bring modifications in the band properties. Changes in the population density of known defect states such as oxygen and cationic vacancies and interstitials can dominate physical and electronic functionalities. Such mechanisms have been explored in this report. Application of pressure may lead to modifications in the electronic clouds, which can also modify the nature of conduction of the materials and affect the functionality of devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Data will be made on reasonable request.

References

  1. J. Zheng, Z. Yang, A. Dai, L. Tang, H. Wei, Y. Li, Z. He, J. Lu, Boosting cell performance of LiNi 0.8 Co 0.15 Al 0.05 O2 via surface structure design. Small 15(50), 1904854 (2019)

    CAS  Google Scholar 

  2. M.B. Zakaria, V. Malgras, T. Takei, C. Li, Y. Yamauchi, Layer-by-layer motif hybridization: nanoporous nickel oxide flakes wrapped into graphene oxide sheets toward enhanced oxygen reduction reaction. Chem. Commun. 51(91), 16409 (2015)

    CAS  Google Scholar 

  3. M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. 105(8), 2783 (2008)

    CAS  Google Scholar 

  4. C.A. Niedermeier, M. Råsander, S. Rhode, V. Kachkanov, B. Zou, N. Alford, M.A. Moram, Band gap bowing in NixMg1−xO. Sci Rep 6(1), 31230 (2016)

    CAS  Google Scholar 

  5. L. D’Amario, J. Föhlinger, G. Boschloo, L. Hammarström, Unveiling hole trapping and surface dynamics of NiO nanoparticles. Chem. Sci. 9(1), 223 (2018)

    Google Scholar 

  6. P. Dubey, N. Kaurav, R.S. Devan, G.S. Okram, Y.K. Kuo, The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide. RSC Adv. 8(11), 5882 (2018)

    CAS  Google Scholar 

  7. T.M. Schuler, D.L. Ederer, S. Itza-Ortiz, G.T. Woods, T.A. Callcott, J.C. Woicik, Character of the insulating state in NiO: a mixture of charge-transfer and Mott-Hubbard character. Phys. Rev. B 71(11), 115113 (2005)

    Google Scholar 

  8. M. Napari, T.N. Huq, T. Maity, D. Gomersall, K.M. Niang, A. Barthel, J.E. Thompson, S. Kinnunen, K. Arstila, T. Sajavaara, R.L.Z. Hoye, A.J. Flewitt, J.L. MacManus-Driscoll, Antiferromagnetism and p-type conductivity of nonstoichiometric nickel oxide thin films. InfoMat 2(4), 769 (2020)

    Google Scholar 

  9. S. Zhang, H. Wang, X. Duan, L. Rao, C. Gong, B. Fan, Z. Xing, X. Meng, B. Xie, X. Hu, Printable and homogeneous NiOx hole transport layers prepared by a polymer-network gel method for large-area and flexible perovskite solar cells. Adv. Funct. Mater. 31, 2106495 (2021)

    CAS  Google Scholar 

  10. D.M. Niedzwiedzki, M. Kouhnavard, Y. Diao, J.M. D’Arcy, P. Biswas, Spectroscopic investigations of electron and hole dynamics in MAPbBr 3 perovskite film and carrier extraction to PEDOT hole transport layer. Phys. Chem. Chem. Phys. 23(23), 13011 (2021)

    CAS  Google Scholar 

  11. A. Rougier, C. Delmas, A.V. Chadwick, Non-cooperative Jahn-Teller effect in LiNiO2: an EXAFS study. Solid State Commun. 94(2), 123 (1995)

    CAS  Google Scholar 

  12. J. van Elp, H. Eskes, P. Kuiper, G.A. Sawatzky, Electronic structure of Li-doped NiO. Phys. Rev. B 45(4), 1612 (1992)

    Google Scholar 

  13. J.M. McKay, V.E. Henrich, Surface electronic structure of NiO: defect states, O2 and H2O interactions. Phys. Rev. B 32(10), 6764 (1985)

    CAS  Google Scholar 

  14. D.M. Duffy, P.W. Tasker, A calculation of the formation energies of intrinsic defects near grain boundaries in NiO. Philos. Mag. A 50(2), 143 (1985)

    Google Scholar 

  15. M. Taeño, D. Maestre, A. Cremades, An approach to emerging optical and optoelectronic applications based on NiO micro- and nanostructures. Nanophotonics 10(7), 1785 (2021)

    Google Scholar 

  16. Y. Wang, Q. Niu, C. Hu, W. Wang, M. He, Y. Zhang, S. Li, L. Zhao, X. Wang, J. Xu, Q. Zhu, S. Chen, Ultrathin nickel oxide film as a hole buffer layer to enhance the optoelectronic performance of a polymer light-emitting diode. Opt. Lett. 36(8), 1521 (2011)

    CAS  Google Scholar 

  17. V.I. Sokolov, V.A. Pustovarov, V.N. Churmanov, VYu. Ivanov, N.B. Gruzdev, P.S. Sokolov, A.N. Baranov, A.S. Moskvin, Unusual x-ray excited luminescence spectra of NiO suggest self-trapping of the d - d charge-transfer exciton. Phys. Rev. B 86(11), 115128 (2012)

    Google Scholar 

  18. A. Manikandan, J. Judith Vijaya, L. John Kennedy, Comparative investigation of NiO nano- and microstructures for structural, optical and magnetic properties. Physica E: Low-dimens. Syst. Nanostruct. 49, 117 (2013)

    CAS  Google Scholar 

  19. S. Mochizuki, T. Saito, Intrinsic and defect-related luminescence of NiO. Physica B 404(23–24), 4850 (2009)

    CAS  Google Scholar 

  20. S. Zargouni, S. El Whibi, E. Tessarolo, M. Rigon, A. Martucci, H. Ezzaouia, Structural properties and defect related luminescence of Yb-doped NiO sol-gel thin films. Superlattices Microstruct. 138, 106361 (2020)

    CAS  Google Scholar 

  21. V.I. Sokolov, V.A. Pustovarov, V.N. Churmanov, VYu. Ivanov, N.B. Gruzdev, P.S. Sokolov, A.N. Baranov, A.S. Moskvin, Self-trapping of the d-d charge transfer exciton in bulk NiO evidenced by X-ray excited luminescence. Jetp Lett. 95(10), 528 (2012)

    CAS  Google Scholar 

  22. J.D. Hwang, T.H. Ho, Effects of oxygen content on the structural, optical, and electrical properties of NiO films fabricated by radio-frequency magnetron sputtering. Mater. Sci. Semicond. Process 71, 396 (2017)

    CAS  Google Scholar 

  23. T.R. Silva, V.D. Silva, L.S. Ferreira, A.J.M. Araújo, M.A. Morales, T.A. Simões, C.A. Paskocimas, D.A. Macedo, Role of oxygen vacancies on the energy storage performance of battery-type NiO electrodes. Ceram. Int. 46(7), 9233 (2020)

    CAS  Google Scholar 

  24. T. Dutta, P. Gupta, A. Gupta, J. Narayan, Effect of Li doping in NiO thin films on its transparent and conducting properties and its application in heteroepitaxial p-n junctions. J. Appl. Phys. 108(8), 083715 (2010)

    Google Scholar 

  25. G. Fu, X. Wen, S. Xi, Z. Chen, W. Li, J.-Y. Zhang, A. Tadich, R. Wu, D.-C. Qi, Y. Du, J. Cheng, K.H.L. Zhang, Tuning the electronic structure of NiO via Li doping for the fast oxygen evolution reaction. Chem. Mater. 31(2), 419 (2019)

    CAS  Google Scholar 

  26. R.S. Kate, S.C. Bulakhe, R.J. Deokate, Co doping effect on structural and optical properties of nickel oxide (NiO) thin films via spray pyrolysis. Opt. Quant. Electron 51(10), 319 (2019)

    Google Scholar 

  27. M.A. Peck, Y. Huh, R. Skomski, R. Zhang, P. Kharel, M.D. Allison, D.J. Sellmyer, M.A. Langell, Magnetic properties of NiO and (Ni, Zn)O nanoclusters. J. Appl. Phys. 109(7), 07B518 (2011)

    Google Scholar 

  28. M. Mock, M. Bianchini, F. Fauth, K. Albe, S. Sicolo, Atomistic understanding of the LiNiO 2 –NiO 2 phase diagram from experimentally guided lattice models. J. Mater. Chem. A9(26), 14928 (2021)

    Google Scholar 

  29. J.K. Kim, PEG-assisted sol-gel synthesis of compact nickel oxide hole-selective layer with modified interfacial properties for organic solar cells. Polymers 11(1), 120 (2019)

    Google Scholar 

  30. M.N. Siddique, A. Ahmed, P. Tripathi, Electric transport and enhanced dielectric permittivity in pure and Al doped NiO nanostructures. J. Alloys Compd. 735, 516 (2018)

    CAS  Google Scholar 

  31. Y. Lin, J. Wang, L. Jiang, Y. Chen, C.-W. Nan, High permittivity Li and Al doped NiO ceramics. Appl. Phys. Lett. 85(23), 5664 (2004)

    CAS  Google Scholar 

  32. M. ul Haq, Z. Zhang, Z. Wen, S. Khan, S. ud Din, N. Rahman, L. Zhu, Humidity sensor based on mesoporous Al-doped NiO ultralong nanowires with enhanced ethanol sensing performance. J. Mater. Sci.: Mater. Electron 30(7), 7121 (2019)

    CAS  Google Scholar 

  33. J.Y. Zhang, W.W. Li, R.L.Z. Hoye, J.L. MacManus-Driscoll, M. Budde, O. Bierwagen, L. Wang, Y. Du, M.J. Wahila, L.F.J. Piper, T.-L. Lee, H.J. Edwards, V.R. Dhanak, K.H.L. Zhang, Electronic and transport properties of Li-doped NiO epitaxial thin films. J. Mater. Chem. C6(9), 2275 (2018)

    Google Scholar 

  34. Z. Saki, K. Sveinbjörnsson, G. Boschloo, N. Taghavinia, The effect of lithium doping in solution-processed nickel oxide films for perovskite solar cells. ChemPhysChem 20(24), 3322 (2019)

    CAS  Google Scholar 

  35. P.K. Mishra, P. Viji, R. Dobhal, A. Sengupta, E.G. Rini, S. Sen, Defects assisted photosensing and dye degradation of Ni/Ga co-doped ZnO: a theory added experimental investigation. J. Alloys Compd. 893, 162229 (2021)

    Google Scholar 

  36. P. K. Mishra, S. Ayaz, G. Bajpai, Mohd. Nasir, P. Gupta, S. Sen: in (Jodhpur, India, 2020), p. 030486.

  37. P.K. Mishra, S. Ayaz, B. Kissinquinker, S. Sen, Defects assisted visible light sensing in Zn 1–x (GaSi) x/2 O. J. Appl. Phys. 127(15), 154501 (2020). https://doi.org/10.1063/1.5139896

    Article  CAS  Google Scholar 

  38. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009)

    Google Scholar 

  39. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R.A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced capabilities for materials modelling with quantum espresso. J. Phys.: Condens. Matter 29(46), 465901 (2017)

    CAS  Google Scholar 

  40. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    CAS  Google Scholar 

  41. A. Dal Corso, Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 95, 337 (2014)

    Google Scholar 

  42. M. Cococcioni, S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 71(3), 035105 (2005)

    Google Scholar 

  43. I. Timrov, N. Marzari, M. Cococcioni, Hubbard parameters from density-functional perturbation theory. Phys. Rev. B 98(8), 085127 (2018)

    Google Scholar 

  44. I. Timrov, N. Marzari, M. Cococcioni, Self-consistent Hubbard parameters from density-functional perturbation theory in the ultrasoft and projector-augmented wave formulations. Phys. Rev. B 103(4), 045141 (2021)

    CAS  Google Scholar 

  45. A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scripta Mater. 108, 1 (2015)

    CAS  Google Scholar 

  46. R.M. Pick, M.H. Cohen, R.M. Martin, Microscopic theory of force constants in the adiabatic approximation. Phys. Rev. B 1(2), 910 (1970)

    Google Scholar 

  47. Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, I. Tanaka, Band structure diagram paths based on crystallography. Comput. Mater. Sci. 128, 140 (2017)

    CAS  Google Scholar 

  48. E. Aytan, B. Debnath, F. Kargar, Y. Barlas, M.M. Lacerda, J.X. Li, R.K. Lake, J. Shi, A.A. Balandin, Spin-phonon coupling in antiferromagnetic nickel oxide. Appl. Phys. Lett. 111(25), 252402 (2017)

    Google Scholar 

  49. R.E. Dietz, G.I. Parisot, A.E. Meixner, Infrared absorption and Raman scattering by two-magnon processes in NiO. Phys. Rev. B 4(7), 2302 (1971)

    Google Scholar 

  50. C.-C. Kao, W.A.L. Caliebe, J.B. Hastings, J.-M. Gillet, X-ray resonant Raman scattering in NiO: resonant enhancement of the charge-transfer excitations. Phys. Rev. B 54(23), 16361 (1996)

    CAS  Google Scholar 

  51. N. Bala, H.K. Singh, S. Verma, S. Rath, Magnetic-order induced effects in nanocrystalline NiO probed by Raman spectroscopy. Phys. Rev. B 102(2), 024423 (2020)

    CAS  Google Scholar 

  52. Z. Qiu, Y. Ma, T. Edvinsson, In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting. Nano Energy 66, 104118 (2019)

    CAS  Google Scholar 

  53. N. Mironova-Ulmane, A. Kuzmin, I. Sildos, M. Pärs, Polarisation dependent Raman study of single-crystal nickel oxide. Open Phys. 9(4), 1096 (2011)

    CAS  Google Scholar 

  54. H. Yan, D. Zhang, J. Xu, Y. Lu, Y. Liu, K. Qiu, Y. Zhang, Y. Luo, Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors. Nanoscale Res. Lett. 9(1), 424 (2014)

    Google Scholar 

  55. M.J. Massey, N.H. Chen, J.W. Allen, R. Merlin, Pressure dependence of two-magnon Raman scattering in NiO. Phys. Rev. B 42(13), 8776 (1990)

    CAS  Google Scholar 

  56. R. Kumar, P.N. Prasad, F. Veillon, W. Prellier, Raman spectroscopic and magnetic properties of Europium doped nickel oxide nanoparticles prepared by microwave-assisted hydrothermal method. J. Alloys Compd. 858, 157639 (2021)

    Google Scholar 

  57. G. Trimarchi, Z. Wang, A. Zunger, Polymorphous band structure model of gapping in the antiferromagnetic and paramagnetic phases of the Mott insulators MnO, FeO, CoO, and NiO. Phys. Rev. B 97(3), 035107 (2018)

    CAS  Google Scholar 

  58. D. Wang, S. Xu, L. Wu, Z. Li, P. Zhu, D. Wang, Spin–phonon coupling in NiO nanoparticle. J. Appl. Phys. 128(13), 133905 (2020)

    CAS  Google Scholar 

  59. S. Irum, S. Andleeb, S. Sardar, Z. Mustafa, G. Ghaffar, M. Mumtaz, Mubasher, M.. M. Arslan, M. Abbas, Chemical synthesis and antipseudomonal activity of Al-doped NiO nanoparticles. Front. Mater. 8, 673458 (2021)

    Google Scholar 

  60. J. Osorio-Guillén, S. Lany, A. Zunger, M. Caldas, and N. Studart: in (Rio de Janeiro (Brazil), 2010), pp. 128–129.

  61. B. Choudhury, M. Dey, A. Choudhury, Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int. Nano Lett. 3(1), 25 (2013). https://doi.org/10.1186/2228-5326-3-25

    Article  CAS  Google Scholar 

  62. B. Choudhury, B. Borah, A. Choudhury, Ce–Nd codoping effect on the structural and optical properties of TiO2 nanoparticles. Mater. Sci. Eng., B 178(4), 239 (2013)

    CAS  Google Scholar 

  63. P.K. Mishra, S. Ayaz, T. Srivastava, S. Tiwari, R. Meena, B. Kissinquinker, S. Biring, S. Sen, Role of Ga-substitution in ZnO on defect states, carrier density, mobility and UV sensing. J. Mater. Sci.: Mater. Electron. 30(20), 18686 (2019)

    CAS  Google Scholar 

  64. P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9(23), 6814 (2018)

    Google Scholar 

  65. J.M. Raguse, J.R. Sites, Correlation of electroluminescence with open-circuit voltage from thin-film CdTe solar cells. IEEE J. Photovoltaics 5(4), 1175 (2015)

    Google Scholar 

  66. S.R. Jiang, B.X. Feng, P.X. Yan, X.M. Cai, S.Y. Lu, The effect of annealing on the electrochromic properties of microcrystalline NiOx films prepared by reactive magnetron rf sputtering. Appl. Surf. Sci. 174(2), 125 (2001)

    CAS  Google Scholar 

  67. A. Gandhi, S. Wu, Strong deep-level-emission photoluminescence in NiO nanoparticles. Nanomaterials 7(8), 231 (2017)

    Google Scholar 

  68. J. Gangwar, K.K. Dey, S.K. Tripathi, M. Wan, R.R. Yadav, R.K. Singh, A.K. Samta, Srivastava, NiO-based nanostructures with efficient optical and electrochemical properties for high-performance nanofluids. Nanotechnology 24(41), 415705 (2013)

    Google Scholar 

  69. P.K. Mishra, P. Viji, R. Dobhal, A. Sengupta, E.G. Rini, S. Sen, Defects assisted photosensing and dye degradation of Ni/Ga co-doped ZnO: a theory added experimental investigation. J. Alloys Compd. 893, 162229 (2022)

    CAS  Google Scholar 

  70. T. Srivastava, G. Bajpai, S.W. Liu, S. Biring, S. Sen, Zn1−xSixO: Reduced photosensitivity, improved stability and enhanced conductivity. Scripta Mater. 150, 42 (2018)

    CAS  Google Scholar 

  71. H.-J. Song, M.-H. Seo, K.-W. Choi, M.-S. Jo, J.-Y. Yoo, J.-B. Yoon, High-performance copper oxide visible-light photodetector via grain-structure model. Sci. Rep. 9(1), 7334 (2019)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Science and Technology (DST, Govt. of India) FIST program for providing a Horiba Raman spectrometer to the Discipline of Physics at IIT Indore, employed to gather high quality Raman spectra. They also thank the Ministry of Education and Indian Institute of Technology Indore for providing research infrastructure, especially the SIC facility. The corresponding author acknowledges the DST for research grant under the AMT project (DST/TDT/AMT/2017/200). One of the authors (PKM) would like to thank the Department of Science and Technology (DST), New Delhi, for providing the Inspire Fellowship (IF170002). EGR acknowledges the Department of Science and Technology (DST, Govt. of India) for financial support under the Women Scientist Scheme-A (SR/WOS-A/PM-99/2016 (G)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaditya Sen.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 258 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, P.K., Kumar, S., Rini, E.G. et al. Electroluminescence, UV sensing, and pressure-induced conductance of Li+/Al3+ modified NiO: theoretical/experimental insights. Journal of Materials Research 38, 2550–2565 (2023). https://doi.org/10.1557/s43578-023-00994-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00994-y

Keywords

Navigation