Skip to main content
Log in

WO3:AgInS2 quantum dot electron transport layers in enhanced perovskite solar cells

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The development of the electron transport layers (ETL) was crucially important for the improvement of charge extraction and transportation in perovskite solar cells (PSCs). Here, dual electron transport layers of TiO2 and WO3 mixed with different sizes of AgInS2 quantum dots (TiO2/WO3:AgInS2 QDs) were fabricated for planar perovskite solar cells. The peak intensity of the photoluminescence (PL) of the synthesized AgInS2 QDs were redshifted from 554 to 655 nm with an increased radius of AgInS2 QDs from 3.82 ± 0.52 to 7.78 ± 1.37 nm. The PL intensity of the perovskite film on TiO2/WO3:AgInS2 QDs was quenched by the addition of AgInS2 QDs. The improved device stability was probably caused by the WO3:AgInS2 QDs layer protecting the interface of perovskite layers from direct contact with TiO2 to prevent UV decomposing. Therefore, the TiO2/WO3:AgInS2 QDs as electron transport layers promoted the perovskite solar cell performance and enhanced the long-term stability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r

    Article  CAS  Google Scholar 

  2. H. Sun, Y. Zhou, Y. Xin, K. Deng, L. Meng, J. Xiong, L. Li, Composition and energy band-modified commercial FTO substrate for in situ formed highly efficient electron transport layer in planar perovskite solar cells. Adv. Funct. Mater. 29, 1808667 (2019). https://doi.org/10.1002/adfm.201808667

    Article  CAS  Google Scholar 

  3. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341 (2013). https://doi.org/10.1126/science.1243982

    Article  CAS  Google Scholar 

  4. F. Ruf, M.F. Aygüler, N. Giesbrecht, B. Rendenbach, A. Magin, P. Docampo, H. Kalt, M. Hetterich, Temperature-dependent studies of exciton binding energy and phase-transition suppression in (Cs, FA, MA)Pb(I, Br)3 perovskites. APL Mater. 7, 031113 (2019). https://doi.org/10.1063/1.5083792

    Article  CAS  Google Scholar 

  5. NREL, Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html (accessed 16 August 2022).

  6. C. Zhang, Z. Li, X. Deng, B. Yan, Z. Wang, X. Chen, Z. Sun, S. Huang, Enhancing photovoltaic performance of perovskite solar cells utilizing germanium nanoparticles. Sol. Energy 188, 839–848 (2019). https://doi.org/10.1016/j.solener.2019.06.069

    Article  CAS  Google Scholar 

  7. H.R. Mohseni, M. Dehghanipour, N. Dehghan, F. Tamaddon, M. Ahmadi, M. Sabet, A. Behjat, Enhancement of the photovoltaic performance and the stability of perovskite solar cells via the modification of electron transport layers with reduced graphene oxide/polyaniline composite. Sol. Energy 213, 59–66 (2021). https://doi.org/10.1016/j.solener.2020.11.017

    Article  CAS  Google Scholar 

  8. S. Moghadamzadeh, I.M. Hossain, M. Jakoby, B. Abdollahi Nejand, D. Rueda-Delgado, J.A. Schwenzer, S. Gharibzadeh, T. Abzieher, M.R. Khan, A.A. Haghighirad, I.A. Howard, B.S. Richards, U. Lemmer, U.W. Paetzold, Spontaneous enhancement of the stable power conversion efficiency in perovskite solar cells. J. Mater. Chem. A 8, 670–682 (2020). https://doi.org/10.1039/C9TA09584E

    Article  CAS  Google Scholar 

  9. Y. Chen, Q. Meng, Y. Xiao, X. Zhang, J. Sun, C.B. Han, H. Gao, Y. Zhang, Y. Lu, H. Yan, Mechanism of PbI2 in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Appl. Mater. Interfaces 11, 44101–44108 (2019). https://doi.org/10.1021/acsami.9b13648

    Article  CAS  Google Scholar 

  10. S.-W. Lee, S. Kim, S. Bae, K. Cho, T. Chung, L.E. Mundt, S. Lee, S. Park, H. Park, M.C. Schubert, S.W. Glunz, Y. Ko, Y. Jun, Y. Kang, H.-S. Lee, D. Kim, UV degradation and recovery of perovskite solar cells. Sci. Rep. 6, 38150 (2016). https://doi.org/10.1038/srep38150

    Article  CAS  Google Scholar 

  11. H. Sun, D. Xie, Z. Song, C. Liang, L. Xu, X. Qu, Y. Yao, D. Li, H. Zhai, K. Zheng, C. Cui, Y. Zhao, Interface defects passivation and conductivity improvement in planar perovskite solar cells using Na2S-doped compact TiO2 electron transport layers. ACS Appl. Mater. Interfaces 12, 22853–22861 (2020). https://doi.org/10.1021/acsami.0c03180

    Article  CAS  Google Scholar 

  12. Y. Chen, Q. Meng, L. Zhang, C. Han, H. Gao, Y. Zhang, H. Yan, SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress. J. Energy Chem. 35, 144–167 (2019). https://doi.org/10.1016/j.jechem.2018.11.011

    Article  Google Scholar 

  13. Y. You, W. Tian, L. Min, F. Cao, K. Deng, L. Li, TiO2/WO3 bilayer as electron transport layer for efficient planar perovskite solar cell with efficiency exceeding 20%. Adv. Mater. Interfaces 7, 1901406 (2020). https://doi.org/10.1002/admi.201901406

    Article  CAS  Google Scholar 

  14. Q. An, P. Fassl, Y.J. Hofstetter, D. Becker-Koch, A. Bausch, P.E. Hopkinson, Y. Vaynzof, High performance planar perovskite solar cells by ZnO electron transport layer engineering. Nano Energy 39, 400–408 (2017). https://doi.org/10.1016/j.nanoen.2017.07.013

    Article  CAS  Google Scholar 

  15. W. Zhang, J. Xiong, L. Jiang, J. Wang, T. Mei, X. Wang, H. Gu, W.A. Daoud, J. Li, Thermal stability-enhanced and high-efficiency planar perovskite solar cells with interface passivation. ACS Appl. Mater. Interfaces 9, 38467–38476 (2017). https://doi.org/10.1021/acsami.7b10994

    Article  CAS  Google Scholar 

  16. U. Khan, T. Iqbal, M. Khan, R. Wu, SnO2/ZnO as double electron transport layer for halide perovskite solar cells. Sol Energy 223, 346–350 (2021). https://doi.org/10.1016/j.solener.2021.05.059

    Article  CAS  Google Scholar 

  17. D.-W. Zhao, M.-Y. Yu, L.-L. Zheng, M. Li, S.-J. Dai, D.-C. Chen, T.-C. Lee, D.-Q. Yun, Enhanced efficiency and stability of planar perovskite solar cells using a dual electron transport layer of gold nanoparticles embedded in anatase TiO2 films. ACS Appl. Energy Mater. 3, 9568–9575 (2020). https://doi.org/10.1021/acsaem.0c00276

    Article  CAS  Google Scholar 

  18. W. Huang, R. Zhang, X. Xia, P. Steichen, N. Liu, J. Yang, L. Chu, X.A. Li, Room temperature processed double electron transport layers for efficient perovskite solar cells. Nanomaterials 11, 329 (2021). https://doi.org/10.3390/nano11020329

    Article  CAS  Google Scholar 

  19. J. Dagar, S. Castro-Hermosa, G. Lucarelli, A. Zampetti, F. Cacialli, T.M. Brown, Low-temperature solution-processed thin SnO2/Al2O3 double electron transport layers toward 20% efficient perovskite solar cells. IEEE J. Photovolt. 9, 1309–1315 (2019). https://doi.org/10.1109/JPHOTOV.2019.2928466

    Article  Google Scholar 

  20. M.M. Tavakoli, P. Yadav, R. Tavakoli, J. Kong, Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability. Adv. Energy Mater. 8, 1800794 (2018). https://doi.org/10.1002/aenm.201800794

    Article  CAS  Google Scholar 

  21. K. Mahmood, B.S. Swain, A.R. Kirmani, A. Amassian, Highly efficient perovskite solar cells based on a nanostructured WO3–TiO2 core–shell electron transporting material. J. Mater. Chem. A 3, 9051–9057 (2015). https://doi.org/10.1039/C4TA04883K

    Article  CAS  Google Scholar 

  22. A. Gheno, P. Trang, C. Bin, J. Bouclé, B. Ratier, S. Vedraine, Printable WO3 electron transporting layer for perovskite solar cells: influence on device performance and stability. Sol. Energy Mater. Sol. Cells 161, 347–354 (2016). https://doi.org/10.1016/j.solmat.2016.10.002

    Article  CAS  Google Scholar 

  23. W. Li, P. Da, Y. Zhang, Y. Wang, X. Lin, X. Gong, G. Zheng, WO3 nanoflakes for enhanced photoelectrochemical conversion. ACS Nano 8, 11770–11777 (2014). https://doi.org/10.1021/nn5053684

    Article  CAS  Google Scholar 

  24. M. Shahiduzzaman, S. Fukaya, E.Y. Muslih, L. Wang, M. Nakano, M. Akhtaruzzaman, M. Karakawa, K. Takahashi, J.-M. Nunzi, T. Taima, Metal oxide compact electron transport layer modification for efficient and stable perovskite solar cells. Materials 13, 2207 (2020). https://doi.org/10.3390/ma13092207

    Article  CAS  Google Scholar 

  25. P. Chen, Y. Wang, M. Wang, X. Zhang, L. Wang, Y. Liu, TiO2 nanoparticle-based electron transport layer with improved wettability for efficient planar-heterojunction perovskite solar cell. J. Energy Chem. 24, 717–721 (2015). https://doi.org/10.1016/j.jechem.2015.10.014

    Article  Google Scholar 

  26. H. Li, W. Shi, W. Huang, E.-P. Yao, J. Han, Z. Chen, S. Liu, Y. Shen, M. Wang, Y. Yang, Carbon quantum dots/TiOx electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19%. Nano Lett. 17, 2328–2335 (2017). https://doi.org/10.1021/acs.nanolett.6b05177

    Article  CAS  Google Scholar 

  27. D. Wang, J. Ni, J. Guan, X. Zhou, S. Zhang, Y. Zhang, Q. Huang, H. Cai, J. Li, J. Zhang, Thin film of TiO2–ZnO binary mixed nanoparticles as electron transport layers in low-temperature processed perovskite solar cells. NANO 15, 2050036 (2020). https://doi.org/10.1142/s1793292020500368

    Article  CAS  Google Scholar 

  28. S.A. Shah, T. Habib, H. Gao, P. Gao, W. Sun, M.J. Green, M. Radovic, Template-free 3D titanium carbide (Ti3C2Tx) MXene particles crumpled by capillary forces. ChemComm 53, 400–403 (2017). https://doi.org/10.1039/C6CC07733A

    Article  CAS  Google Scholar 

  29. Y. Yang, H. Lu, S. Feng, L. Yang, H. Dong, J. Wang, C. Tian, L. Li, H. Lu, J. Jeong, S.M. Zakeeruddin, Y. Liu, M. Grätzel, A. Hagfeldt, Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2. Energy Environ. Sci. 14, 3447–3454 (2021). https://doi.org/10.1039/D1EE00056J

    Article  CAS  Google Scholar 

  30. A. Kaewprajak, P. Kumnorkaew, T. Sagawa, Improved photovoltaic performance and device stability of planar heterojunction perovskite solar cells using TiO2 and TiO2 mixed with AgInS2 quantum dots as dual electron transport layers. Org. Electron. 69, 26–33 (2019). https://doi.org/10.1016/j.orgel.2019.02.029

    Article  CAS  Google Scholar 

  31. A. Kaewprajak, P. Kumnorkaew, T. Sagawa, Silver–indium–sulfide quantum dots in titanium dioxide as electron transport layer for highly efficient and stable perovskite solar cells. J. Mater. Sci. Mater. Electron. 30, 4041–4055 (2019). https://doi.org/10.1007/s10854-019-00691-9

    Article  CAS  Google Scholar 

  32. Y. Akaki, S. Kurihara, M. Shirahama, K. Tsurugida, S. Seto, T. Kakeno, K. Yoshino, Structural, electrical and optical properties of AgInS2 thin films grown by thermal evaporation method. J. Phys. Chem. Solids 66, 1858–1861 (2005). https://doi.org/10.1016/j.jpcs.2005.09.005

    Article  CAS  Google Scholar 

  33. T.J. Jacobsson, T. Edvinsson, Absorption and fluorescence spectroscopy of growing ZnO quantum dots: size and band gap correlation and evidence of mobile trap states. Inorg. Chem. 50, 9578–9586 (2011). https://doi.org/10.1021/ic201327n

    Article  CAS  Google Scholar 

  34. T. Chonsut, A. Rangkasikorn, S. Wirunchit, A. Kaewprajak, P. Kumnorkaew, N. Kayunkid, J. Nukeaw, Rapid convective deposition; an alternative method to prepare organic thin film in scale of nanometer. Mater. Today 4, 6134–6139 (2017). https://doi.org/10.1016/j.matpr.2017.06.106

    Article  Google Scholar 

  35. A. Kaewprajak, P. Kumnorkaew, K. Lohawet, B. Duong, T. Chonsut, N. Kayunkid, N. Saranrom, V. Promarak, An unconventional blade coating for low-cost fabrication of PCDTBT: PC70BM polymer and CH3NH3PbIxCl3-x perovskite solar cells. Surf. Interfaces 23, 100969 (2021). https://doi.org/10.1016/j.surfin.2021.100969

    Article  CAS  Google Scholar 

  36. J.-Y. Chang, G.-Q. Wang, C.-Y. Cheng, W.-X. Lin, J.-C. Hsu, Strategies for photoluminescence enhancement of AgInS2 quantum dots and their application as bioimaging probes. J. Mater. Chem. 22, 10609–10618 (2012). https://doi.org/10.1039/C2JM30679D

    Article  CAS  Google Scholar 

  37. T. Torimoto, T. Adachi, K.-I. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, S. Kuwabata, Facile synthesis of ZnS−AgInS2 solid solution nanoparticles for a color-adjustable luminophore. J. Am. Chem. Soc. 129, 12388–12389 (2007). https://doi.org/10.1021/ja0750470

    Article  CAS  Google Scholar 

  38. H. Min, G. Kim, M.J. Paik, S. Lee, W.S. Yang, M. Jung, S.I. Seok, Stabilization of precursor solution and perovskite layer by addition of sulfur. Adv. Energy Mater. 9, 1803476 (2019). https://doi.org/10.1002/aenm.201803476

    Article  CAS  Google Scholar 

  39. Z. Wang, A.K. Baranwal, M.A. Kamarudin, C.H. Ng, M. Pandey, T. Ma, S. Hayase, Xanthate-induced sulfur doped all-inorganic perovskite with superior phase stability and enhanced performance. Nano Energy 59, 258–267 (2019). https://doi.org/10.1016/j.nanoen.2019.02.049

    Article  CAS  Google Scholar 

  40. Y. Zhou, C. Liu, F. Meng, C. Zhang, G. Wei, L. Gao, T. Ma, Recent progress in perovskite solar cells modified by sulfur compounds. Solar RRL 5, 713 (2021). https://doi.org/10.1002/solr.202000713

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Science and Technology Development Agency (NSTDA) in Thailand (P1952316) and the Energy Regulatory Commission (ERC) of Thailand. The authors would like to thank the support from Mr. Khathawut Lohawet from the innovative nanocoating research team for useful discussion, fabrication and characterization of PSCs and College of Nanotechnology, King Mongkut’s Institute of Technology Ladkrabang for operations XRD, PL and UV-Vis spectroscopy. We are also grateful to Prof. Dr. S. Seraphin (Professional Authorship Center, NSTDA) for fruitful discussions in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anusit Kaewprajak or Navaphun Kayunkid.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 524 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seriwattanachai, C., Kaewprajak, A., Sukgorn, N. et al. WO3:AgInS2 quantum dot electron transport layers in enhanced perovskite solar cells. Journal of Materials Research 38, 1882–1893 (2023). https://doi.org/10.1557/s43578-023-00967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00967-1

Keywords

Navigation