Skip to main content
Log in

Magnetic and structural properties of novel-coated multi-doped Ni–Co ferrite nanomaterial: Experimental and theoretical investigations

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, the magnetic properties of Ni0.5Co0.5Fe1.59Mo0.1Gd0.2Sm0.1Tb0.01O4 nanoparticles coated with oleic acid and prepared for the first time by the co-precipitation method were studied using magnetic property measurement system. TGA analysis was used to analyze the thermal behavior of the obtained precipitate. The formation of a pure phase of spinel nanoparticles with a mixed structure coated with oleic acid was confirmed by X-ray diffraction. The formation of crystallographic sites of spinel structure and the presence of oleic acid on the surface of nanoparticles was confirmed by infrared spectroscopy (FTIR). Transmission electron microscopy shows that the nanoparticles have a spherical shape morphology. The magnetic properties were determined at three different temperatures (5, 80, and 300 K) and revealed that the synthesized material has a superparamagnetic behavior. DFT calculations were performed to study the effect of doping the Ni–Co spinel ferrite with Mo, Sm, Tb, and Gd.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. R. Lv, M. Raab, Y. Wang, J. Tian, J. Lin, P.N. Prasad, Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coord. Chem. Rev. 460, 214486 (2022)

    Article  CAS  Google Scholar 

  2. G. Xue, T. Bai, W. Wang, S. Wang, M. Ye, Recent advances in various applications of nickel cobalt sulfide-based materials. J. Mater. Chem. A 10(15), 8087 (2022)

    Article  CAS  Google Scholar 

  3. J. Siddiqui, M. Taheri, A.U. Alam, M.J. Deen, Nanomaterials in smart packaging applications: a review. Small 18(1), 2101171 (2022)

    Article  CAS  Google Scholar 

  4. S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules 25(1), 112 (2020)

    Article  CAS  Google Scholar 

  5. S.S. Samal, S.R. Manohara, Nanoscience and nanotechnology in india: a broad perspective. Mater. Today Proc. 10, 151 (2019)

    Article  Google Scholar 

  6. G. Nathalie, P. Stéphane, M.L. Jose, E. Yolanda, G. Carole, Nanotechnologies for active and intelligent food packaging: opportunities and risks, in Nanotechnology in Agriculture and Food Science (2017), p. 177

  7. A. Mandal, E. Ray Banerjee, Nanomaterials and Biomedicine (Springer, 2020), pp. 1–39

  8. W.-H. Zhong, Nanoscience and Nanomaterials: Synthesis, Manufacturing and Industry Impacts (DEStech Publications Inc, Lancaster, 2012)

    Google Scholar 

  9. K.K. Kefeni, T.A. Msagati, B.B. Mamba, Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater. Sci. Eng. B 215, 37 (2017)

    Article  CAS  Google Scholar 

  10. S.Y. Srinivasan, K.M. Paknikar, D. Bodas, V. Gajbhiye, Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine 13(10), 1221 (2018)

    Article  CAS  Google Scholar 

  11. K.K. Kefeni, T.A.M. Msagati, T.T.I. Nkambule, B.B. Mamba, Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Mater. Sci. Eng. C 107, 110314 (2020)

    Article  CAS  Google Scholar 

  12. N. Yahya, M. Kashif, N. Nasir, M. Niaz Akhtar, N.M. Yusof, Cobalt ferrite nanoparticles: an innovative approach for enhanced oil recovery application. J. Nano Res. 17, 115 (2012)

    Article  CAS  Google Scholar 

  13. A. Franco, F.C. e Silva, High temperature magnetic properties of cobalt ferrite nanoparticles. Appl. Phys. Lett. 96(17), 172505 (2010)

    Article  Google Scholar 

  14. X. Lasheras, M. Insausti, I. Gil de Muro, E. Garaio, F. Plazaola, M. Moros, L. De Matteis, J.M. de la Fuente, L. Lezama, Chemical synthesis and magnetic properties of monodisperse nickel ferrite nanoparticles for biomedical applications. J. Phys. Chem. C 120(6), 3492 (2016)

    Article  CAS  Google Scholar 

  15. S.B. Narang, K. Pubby, Nickel spinel ferrites: a review. J. Magn. Magn. Mater. 519, 167163 (2021)

    Article  CAS  Google Scholar 

  16. W. Chen, D. Liu, W. Wu, H. Zhang, J. Wu, Structure and magnetic properties evolution of rod-like Co0. 5Ni0. 25Zn0. 25DyxFe2- xO4 synthesized by solvothermal method. J. Magn. Magn. Mater. 422, 49 (2017)

    Article  CAS  Google Scholar 

  17. P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, Effect of Ni doping on structural and magnetic properties of Co1–xNixFe1.9Mn0.1O4. J. Magn. Magn. Mater. 322(6), 718 (2010)

    Article  CAS  Google Scholar 

  18. M. Šoka, R. Dosoudil, M. Ušáková, Microstructural and magnetic characteristics of divalent Zn, Cu and Co-doped Ni ferrites. Acta Phys. Pol. A 131, 690 (2017)

    Article  Google Scholar 

  19. H. Moradmard, S. Farjami Shayesteh, P. Tohidi, Z. Abbas, Magnetic and dielectric properties of polymer-coated Ni0.5Co0. 3Cu0.2Fe2O4 nanostructures. J. Supercond. Nov. Magn. 29(8), 2171 (2016)

    Article  CAS  Google Scholar 

  20. E. Pervaiz, I.H. Gul, Low temperature synthesis and enhanced electrical properties by substitution of Al3+ and Cr3+ in Co–Ni nanoferrites. J. Magn. Magn. Mater. 343, 194 (2013)

    Article  CAS  Google Scholar 

  21. R.H. Kadam, S.T. Alone, A.S. Gaikwad, A.P. Birajdar, S.E. Shirsath, Al3+ ions dependent structural and magnetic properties of Co–Ni nano-alloys. J. Nanosci. Nanotechnol. 14(6), 4101 (2014)

    Article  CAS  Google Scholar 

  22. M.L. Kahn, Z.J. Zhang, Synthesis and magnetic properties of CoFe2O4 spinel ferrite nanoparticles doped with lanthanide ions. Appl. Phys. Lett. 78(23), 3651 (2001)

    Article  CAS  Google Scholar 

  23. R.N. Panda, J.C. Shih, T.S. Chin, Magnetic properties of nano-crystalline Gd-or Pr-substituted CoFe2O4 synthesized by the citrate precursor technique. J. Magn. Magn. Mater. 257(1), 79 (2003)

    Article  CAS  Google Scholar 

  24. B.D. Cullity, Introduction to magnetic materials (Addison-Wesley, Reading, MA, 1972). Shectman V Van Hardeenand Jossel Muter Lett. 20, 329 (1994)

    Google Scholar 

  25. E. Abouzir, M. Elansary, M. Belaiche, H. Jaziri, Magnetic and structural properties of single-phase Gd 3+ -substituted Co–Mg ferrite nanoparticles. RSC Adv. 10(19), 11244 (2020)

    Article  CAS  Google Scholar 

  26. M. Elansary, M. Belaiche, C. Ahmani Ferdi, E. Iffer, I. Bsoul, Novel ferrimagnetic nanomaterial Sr (1−x) La x Gd y Sm z Fe (12−(z+y)) O 19 for recording media applications: experimental and theoretical investigations. New J. Chem. (2021). https://doi.org/10.1039/D1NJ00938A

    Article  Google Scholar 

  27. A. Hssaini, M. Belaiche, M. Elansary, C.A. Ferdi, Y. Mouhib, Magnetic and structural properties of novel-coated Ni0.5Co0.5Fe1.6Gd0.2Mo0.1Sm0.1O4 spinel ferrite nanomaterial: experimental and theoretical investigations. J. Supercond. Nov. Magn. 35, 2799–2820 (2022)

    Article  CAS  Google Scholar 

  28. O. Oulhakem, I. Guetni, M. Elansary, Y. Mouhib, M. Belaiche, K. Belrhiti Alaoui, Characterization and magnetic study of new oleic acid-coated Gd–Sm–Er-doped Co-nanoferrite CoFe1,6Er0,1Gd0,2Sm0,1O4. Appl. Phys. A 127(11), 814 (2021)

    Article  CAS  Google Scholar 

  29. A. Hssaini, M. Belaiche, M. Elansary, One-step synthesis of coated (Gd3+, Er3+) co-doped Co–Ni ferrite nanoparticles; structural and magnetic properties. J. Mater. Sci. Mater. Electron. 32(9), 11931–21143 (2021)

    Article  CAS  Google Scholar 

  30. Y. Belaiche, K. Minaoui, M. Ouadou, M. Elansary, C. Ahmani Ferdi, New nanosized (Gd3+, Sm3+) co-doped zinc ferrite: structural, magnetic and first-principles study. Phys. B Condens. Matter 619, 413262 (2021)

    Article  CAS  Google Scholar 

  31. M. Zhang, J. He, M. Deng, P. Gong, X. Zhang, M. Fan, K. Wang, Rheological behaviours of guar gum derivatives with hydrophobic unsaturated long-chains. RSC Adv. 10(53), 32050 (2020)

    Article  Google Scholar 

  32. Y.-R. Li, Q.-Y. Li, X.-D. Wang, L.-G. Yu, J.-J. Yang, Aquathermolysis of heavy crude oil with ferric oleate catalyst. Pet. Sci. 15(3), 613 (2018)

    Article  CAS  Google Scholar 

  33. I. Hwang, I. Jang, G. Lee, Y. Tak, Binary cobalt and magnesium hydroxide catalyst for oxygen evolution reaction in alkaline water electrolysis. Int. J. Electrochem. Sci. 11, 6204 (2016)

    Article  CAS  Google Scholar 

  34. S. Lin, X. Pan, D. Meng, T. Zhang, Electric conversion treatment of cobalt-containing wastewater. Water Sci. Technol. 83(8), 1973 (2021)

    Article  CAS  Google Scholar 

  35. G.F. Carrasco, M.C. Portillo, A.C. Santiago, A.R. Diaz, M.A. Mora-Ramirez, O.P. Moreno, Morphological and structural analysis of the Fe(OH)3 and CuS transitions to Fe2O3 and CuO. Optik 243, 167377 (2021)

    Article  CAS  Google Scholar 

  36. S. Jovanović, M. Spreitzer, M. Tramšek, Z. Trontelj, D. Suvorov, Effect of oleic acid concentration on the physicochemical properties of cobalt ferrite nanoparticles. J. Phys. Chem. C 118(25), 13844 (2014)

    Article  Google Scholar 

  37. S. Joshi, V.B. Kamble, M. Kumar, A.M. Umarji, G. Srivastava, Nickel substitution induced effects on gas sensing properties of cobalt ferrite nanoparticles. J. Alloys Compd. 654, 460 (2016)

    Article  CAS  Google Scholar 

  38. K. Khan, Microwave absorption properties of radar absorbing nanosized cobalt ferrites for high frequency applications. J. Supercond. Nov. Magn. 27(2), 453 (2014)

    Article  CAS  Google Scholar 

  39. A. Lassoued, J.F. Li, Magnetic and photocatalytic properties of Ni–Co ferrites. Solid State Sci. 104, 106199 (2020)

    Article  CAS  Google Scholar 

  40. E. Abouzir, M. Belaiche, M. Elansary, C. Ahmani Ferdi, I. Bsoul, Novel magnetic applications: experimental and theoretical investigations. J. Mater. Sci. Mater. Electron. 32, 24748–24765 (2021)

    Article  CAS  Google Scholar 

  41. T. Prabhakaran, R.V. Mangalaraja, J.C. Denardin, J.A. Jiménez, The effect of calcination temperature on the structural and magnetic properties of co-precipitated CoFe 2 O 4 nanoparticles. J. Alloys Compd. 716, 171 (2017)

    Article  CAS  Google Scholar 

  42. Z.K. Heiba, M.B. Mohamed, S.I. Ahmed, Cation distribution correlated with magnetic properties of cobalt ferrite nanoparticles defective by vanadium doping. J. Magn. Magn. Mater. 441, 409 (2017)

    Article  CAS  Google Scholar 

  43. G.S. Shahane, K.V. Zipare, S.S. Bandgar, V.L. Mathe, Cation distribution and magnetic properties of Zn2+ substituted MnFe2O4 nanoparticles. J. Mater. Sci. Mater. Electron. 28(5), 4146 (2017)

    Article  CAS  Google Scholar 

  44. S. Sarmah, R. Borah, P.K. Maji, S. Ravi, T. Bora, Effect of Al3+ substitution on structural, magnetic and dielectric properties of cobalt ferrite synthesized by sol-gel method and its correlation with cationic distribution. Phys. B Condens. Matter 639, 414017 (2022)

    Article  CAS  Google Scholar 

  45. S. Anjum, T. Zeeshan, M.D. Ali, S. Waseem, I. Waseem, Z. Mustafa, Investigation of cationic distribution, Y-K angles, and optical and dielectric properties of as-synthesized cerium-doped cobalt nano-ferrites prepared by co-precipitation method. Appl. Phys. A 128(5), 383 (2022)

    Article  CAS  Google Scholar 

  46. L. Zhang, R. He, H.-C. Gu, Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 253(5), 2611 (2006)

    Article  CAS  Google Scholar 

  47. K. Yang, H. Peng, Y. Wen, N. Li, Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Appl. Surf. Sci. 256(10), 3093 (2010)

    Article  CAS  Google Scholar 

  48. N. Wu, L. Fu, M. Su, M. Aslam, K.C. Wong, V.P. Dravid, Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett. 4(2), 383 (2004)

    Article  CAS  Google Scholar 

  49. M. Victory, R.P. Pant, S. Phanjoubam, Synthesis and characterization of oleic acid coated Fe–Mn ferrite based ferrofluid. Mater. Chem. Phys. 240, 122210 (2020)

    Article  CAS  Google Scholar 

  50. K.V. Chandekar, K.M. Kant, Estimation of the spin-spin relaxation time of surfactant coated CoFe2O4 nanoparticles by electron paramagnetic resonance spectroscopy. Phys. E Low-Dimens. Syst. Nanostruct. 104, 192 (2018)

    Article  CAS  Google Scholar 

  51. X. Yi, M. Cui, Y. Peng, C. Xia, Z. Yao, Q. Li, Influence of calcination temperature on microstructure and properties of (NiCuZn)Fe2O4 ferrite prepared via ultrasonic-assisted co-precipitation. J. Supercond. Nov. Magn. 34(4), 1245 (2021)

    Article  CAS  Google Scholar 

  52. P. Larkin, Infrared Raman Spectrosc (. Elsevier, Amsterdam, 2011), pp.1–5

    Book  Google Scholar 

  53. T.F. Marinca, H.F. Chicinaş, B.V. Neamţu, O. Isnard, P. Pascuta, N. Lupu, G. Stoian, I. Chicinaş, Mechanosynthesis, structural, thermal and magnetic characteristics of oleic acid coated Fe3O4 nanoparticles. Mater. Chem. Phys. 171, 336 (2016)

    Article  CAS  Google Scholar 

  54. I.O. Perez De Berti, M.V. Cagnoli, G. Pecchi, J.L. Alessandrini, S.J. Stewart, J.F. Bengoa, S.G. Marchetti, Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors. Nanotechnology 24(17), 175601 (2013)

    Article  CAS  Google Scholar 

  55. M.V. Limaye, S.B. Singh, S.K. Date, D. Kothari, V.R. Reddy, A. Gupta, V. Sathe, R.J. Choudhary, S.K. Kulkarni, High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. J. Phys. Chem. B 113(27), 9070 (2009)

    Article  CAS  Google Scholar 

  56. T.V.V. Kumar, S. Prabhakar, G.B. Raju, Adsorption of oleic acid at sillimanite/water interface. J. Colloid Interface Sci. 247(2), 275 (2002)

    Article  CAS  Google Scholar 

  57. F.C. Nalle, R. Wahid, I.O. Wulandari, A. Sabarudin, SYNTHESIS and characterization of magnetic Fe3O4 nanoparticles using oleic acid as stabilizing agent. Rasayan J. Chem. 12(1), 14 (2019)

    Article  CAS  Google Scholar 

  58. M.V. Olmo, A. Delgado-Cabello, A. Andrada-Chacón, J. Sánchez-Benítez, E. Urones-Garrote, V. Blanco-Gutiérrez, M.J. Torralvo, R. Sáez-Puche, Effect of composition and coating on the interparticle interactions and magnetic hardness of MFe2O4 (M = Fe Co, Zn) nanoparticles. Phys. Chem. Chem. Phys. 19(12), 8363 (2017)

    Article  Google Scholar 

  59. E.-A. Moacă, C. Farcaş, D. Coricovac, S. Avram, C.-V. Mihali, G.-A. Drâghici, F. Loghin, C. Păcurariu, C. Dehelean, Oleic acid double coated Fe3O4 nanoparticles as anti-melanoma compounds with a complex mechanism of activity—in vitro and in ovo assessment. J. Biomed. Nanotechnol. 15(5), 893 (2019)

    Article  Google Scholar 

  60. Y. Kumar, A. Sharma, M.A. Ahmed, S.S. Mali, C.K. Hong, P.M. Shirage, Morphology-controlled synthesis and enhanced energy product (BH)max of CoFe2O4 nanoparticles. New J. Chem. 42(19), 15793 (2018)

    Article  CAS  Google Scholar 

  61. Y. Kumar, A. Sharma, P.M. Shirage, Shape-controlled CoFe2O4 nanoparticles as an excellent material for humidity sensing. RSC Adv. 7(88), 55778 (2017)

    Article  CAS  Google Scholar 

  62. S.M. Ansari, B.B. Sinha, D. Phase, D. Sen, P.U. Sastry, Y.D. Kolekar, C.V. Ramana, Particle size, morphology, and chemical composition controlled CoFe2O4 nanoparticles with tunable magnetic properties via oleic acid based solvothermal synthesis for application in electronic devices. ACS Appl. Nano Mater. 2(4), 1828 (2019)

    Article  CAS  Google Scholar 

  63. K. Elayakumar, A. Dinesh, A. Manikandan, M. Palanivelu, G. Kavitha, S. Prakash, R. Thilak Kumar, S.K. Jaganathan, A. Baykal, Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 476, 157 (2019)

    Article  CAS  Google Scholar 

  64. E.E. Ateia, M.K. Abdelmaksoud, M.M. Arman, A.S. Shafaay, Comparative study on the physical properties of rare-earth-substituted nano-sized CoFe2O4. Appl. Phys. A 126(2), 91 (2020)

    Article  CAS  Google Scholar 

  65. Y. Slimani, M.A. Almessiere, S. Guner, B. Aktas, S.E. Shirsath, M.V. Silibin, A.V. Trukhanov, A. Baykal, Impact of Sm3+ and Er3+ cations on the structural, optical, and magnetic traits of spinel cobalt ferrite nanoparticles: comparison investigation. ACS Omega 7(7), 6292 (2022)

    Article  CAS  Google Scholar 

  66. K.L. Routray, S. Saha, D. Sanyal, D. Behera, Role of rare-earth (Nd3+) ions on structural, dielectric, magnetic and mossbauer properties of nano-sized CoFe2O4: useful for high frequency application. Mater. Res. Express 6(2), 026107 (2018)

    Article  Google Scholar 

  67. K.M. Srinivasamurthy, V.J. Angadi, S.P. Kubrin, S. Matteppanavar, P.M. Kumar, B. Rudraswamy, Evidence of enhanced ferromagnetic nature and hyperfine interaction studies of Ce-Sm doped Co-Ni ferrite nanoparticles for microphone applications. Ceram. Int. 44(15), 18878 (2018)

    Article  CAS  Google Scholar 

  68. M.A. Almessiere, Y. Slimani, İA. Auwal, S.E. Shirsath, A. Manikandan, A. Baykal, B. Özçelik, İ Ercan, S.V. Trukhanov, D.A. Vinnik, A.V. Trukhanov, Impact of Tm3+ and Tb3+ rare earth cations substitution on the structure and magnetic parameters of Co-Ni nanospinel ferrite. Nanomaterials 10(12), 2384 (2020)

    Article  CAS  Google Scholar 

  69. N. Suo, A. Sun, L. Yu, Z. Zuo, X. Pan, W. Zhang, X. Zhao, Y. Zhang, L. Shao, Effect of different rare earth (RE = Y3+, Sm3+, La3+, and Yb3+) ions doped on the magnetic properties of Ni–Cu–Co ferrite nanomagnetic materials. J. Mater. Sci. Mater. Electron. 32(1), 246 (2021)

    Article  CAS  Google Scholar 

  70. S. Sharma, M.K. Verma, N.D. Sharma, N. Choudhary, S. Singh, D. Singh, Rare-earth doped Ni–Co ferrites synthesized by Pechini method: cation distribution and high temperature magnetic studies. Ceram. Int. 47(12), 17510 (2021)

    Article  CAS  Google Scholar 

  71. Y. Belaiche, K. Minaoui, M. Ouadou, Y. Mouhib, M. Elansary, Elaboration and experimental investigation of Zn-Ni-Co spinel ferrite multi-doped rare-earth (Gd, Er, and Sm) prepared by coprecipitation method. J. Supercond. Nov. Magn. 35(5), 1269 (2022)

    Article  CAS  Google Scholar 

  72. Y. Mouhib, M. Belaiche, Cobalt nano-ferrite synthesized by molten salt process: structural, morphological and magnetic studies. Appl. Phys. A 127(8), 613 (2021)

    Article  CAS  Google Scholar 

  73. M.S.A. Darwish, H. Kim, H. Lee, C. Ryu, J.Y. Lee, J. Yoon, Synthesis of magnetic ferrite nanoparticles with high hyperthermia performance via a controlled Co-precipitation method. Nanomaterials 9(8), 1176 (2019)

    Article  CAS  Google Scholar 

  74. V.H. Ojha, K.M. Kant, Temperature dependent magnetic properties of superparamagnetic CoFe2O4 nanoparticles. Phys. B Condens. Matter 567, 87 (2019)

    Article  CAS  Google Scholar 

  75. M. Virumbrales, V. Blanco-Gutiérrez, A. Delgado-Cabello, R. Sáez-Puche, M.J. Torralvo, Superparamagnetism in CoFe2O4 nanoparticles: an example of a collective magnetic behavior dependent on the medium. J. Alloys Compd. 767, 559 (2018)

    Article  CAS  Google Scholar 

  76. S. Li, J. Pan, F. Gao, D. Zeng, F. Qin, C. He, G. Dodbiba, Y. Wei, T. Fujita, Structure and magnetic properties of coprecipitated nickel-zinc ferrite-doped rare earth elements of Sc, Dy, and Gd. J. Mater. Sci. Mater. Electron. 32(10), 13511 (2021)

    Article  CAS  Google Scholar 

  77. V.K. Lakhani, T.K. Pathak, N.H. Vasoya, K.B. Modi, Structural parameters and X-ray Debye temperature determination study on copper-ferrite-aluminates. Solid State Sci. 13(3), 539 (2011)

    Article  CAS  Google Scholar 

  78. R. Sharma, P. Thakur, M. Kumar, N. Thakur, N.S. Negi, P. Sharma, V. Sharma, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloys Compd. 684, 569 (2016)

    Article  CAS  Google Scholar 

  79. K.M. Srinivasamurthy, V.J. Angadi, S.P. Kubrin, S. Matteppanavar, D.A. Sarychev, B. Rudraswamy, Effect of Ce3+ ion on structural and hyperfine interaction studies of Co0.5Ni0.5Fe2−xCexO4 ferrites: useful for permanent magnet applications. J. Supercond. Nov. Magn. 32(3), 693 (2019)

    Article  CAS  Google Scholar 

  80. R. Topkaya, A. Baykal, A. Demir, Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. J. Nanopart. Res. 15(1), 1359 (2012)

    Article  Google Scholar 

  81. M.K. Kokare, N.A. Jadhav, Y. Kumar, K.M. Jadhav, S.M. Rathod, Effect of Nd3+ doping on structural and magnetic properties of Ni0.5Co0.5Fe2O4 nanocrystalline ferrites synthesized by sol-gel auto combustion method. J. Alloys Compd. 748, 1053 (2018)

    Article  CAS  Google Scholar 

  82. K. Vijaya Babu, G. Satyanarayana, B. Sailaja, G.V. Santosh Kumar, K. Jalaiah, M. Ravi, Structural and magnetic properties of Ni0.8M0.2Fe2O4 (M = Cu, Co) nano-crystalline ferrites. Results Phys. 9, 55 (2018)

    Article  Google Scholar 

  83. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32(5), 751 (1976)

    Article  Google Scholar 

  84. V.N. Antonov, B.N. Harmon, A.N. Yaresko, Electronic structure and x-ray magnetic circular dichroism in Fe 3 O 4 and Mn-, Co−, or Ni-substituted Fe 3 O 4. Phys. Rev. B 67(2), 024417 (2003)

    Article  Google Scholar 

  85. J.M. Quintero, K.L. Salcedo Rodríguez, G.A. Pasquevich, P.M. Zélis, S.J. Stewart, C.E. Rodríguez Torres, L.A. Errico, Experimental and ab initio study of the hyperfine parameters of ZnFe 2O4 with defects. Hyperfine Interact. 237(1), 63 (2016)

    Article  Google Scholar 

  86. S. Wang, J. Yu, Magnetic behaviors of 3d transition metal-doped silicane: a first-principle study. J. Supercond. Nov. Magn. 31(9), 2789 (2018)

    Article  CAS  Google Scholar 

  87. M. Sun, Q. Ren, Y. Zhao, S. Wang, J. Yu, W. Tang, Magnetism in transition metal-substituted germanane: a search for room temperature spintronic devices. J. Appl. Phys. 119(14), 143904 (2016)

    Article  Google Scholar 

  88. W. Yu, Z. Zhu, C.-Y. Niu, C. Li, J.-H. Cho, Y. Jia, Dilute magnetic semiconductor and half-metal behaviors in 3d transition-metal doped black and blue phosphorenes: a first-principles study. Nanoscale Res. Lett. 11(1), 77 (2016)

    Article  Google Scholar 

  89. F. Zheng, C. Zhang, H. Luan, S. Li, P. Wang, Design of half-metallic properties induced by 2p impurities in ZnO nanosheet. J. Solid State Chem. 200, 299 (2013)

    Article  CAS  Google Scholar 

  90. A. Huzayyin, S. Boggs, R. Ramprasad, Density functional analysis of chemical impurities in dielectric polyethylene. IEEE Trans. Dielectr. Electr. Insul. 17(3), 926 (2010)

    Article  CAS  Google Scholar 

  91. W.M. Mulwa, C.N.M. Ouma, M.O. Onani, F.B. Dejene, Energetic, electronic and optical properties of lanthanide doped TiO2: An ab initio LDA+U study. J. Solid State Chem. 237, 129 (2016)

    Article  CAS  Google Scholar 

  92. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009)

    Article  Google Scholar 

  93. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  CAS  Google Scholar 

  94. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)

    Article  Google Scholar 

  95. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, L.D. Marks, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2018)

    Google Scholar 

  96. F. Zhou, M. Cococcioni, C.A. Marianetti, D. Morgan, G. Ceder, First-principles prediction of redox potentials in transition-metal compounds with LDA+ U. Phys. Rev. B 70(23), 235121 (2004)

    Article  Google Scholar 

  97. G.K.H. Madsen, P. Novák, Charge order in magnetite. An LDA+ U study. EPL Europhys. Lett. 69(5), 777 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Belaiche.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisser, I., Belaiche, M., Elansary, M. et al. Magnetic and structural properties of novel-coated multi-doped Ni–Co ferrite nanomaterial: Experimental and theoretical investigations. Journal of Materials Research 38, 1669–1682 (2023). https://doi.org/10.1557/s43578-023-00918-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00918-w

Keywords

Navigation