Skip to main content

Advertisement

Log in

Reduced graphene oxide electrode-coating as anti-corrosive/anti-oxidative laminate for Al/Cu liquid-phase batteries

  • Invited Paper
  • FOCUS ISSUE: Structure-Property Relationships in Emerging Two-dimensional Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Generated power decay in liquid-phase batteries makes it challenging to operate appliances from portable electronic gadgets to light vehicles. When strong acids or bases are used as electrolytes, they often corrode and oxidize electrodes, which eventually degrades performance. To address this urgency, we have employed reduced graphene oxide (RGO) obtained by modified Hummer’s method followed by microwave exposure; as a laminate for copper (Cu) as well as aluminum (Al) electrodes and have demonstrated that it not only safeguards electrodes against strong acids (e.g., FeCl3)/bases (e.g. NaOH), it also enhances performances manifold. Diverse microscopic and spectroscopic tools have been employed to establish the proof of the concept. The functioning of LED light and potable fan blades has been demonstrated. With RGO electrode lamination, Al/Cu liquid phase batteries, having FeCl3/NaOH as electrolytes; could run for 2 h. Present research would inspire future efforts in renewable energy generation, it is believed.

Graphical abstract

Reduced graphene oxide electrode coating acts as anti-corrosive/oxidative electrode-laminate and enhances performance and life time of Al/Cu liquid-phase batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

Data is available on request from corresponding author.

References

  1. W. Tushar, T.K. Saha, C. Yuen et al., Challenges and prospects for negawatt trading in light of recent technological developments. Nat. Energy 5, 834–841 (2020)

    Article  Google Scholar 

  2. D.A. Cullen, K.C. Neyerlin, R.K. Ahluwalia et al., New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6, 462–474 (2021)

    Article  CAS  Google Scholar 

  3. I. Massiot, A. Cattoni, S. Collin, Progress and prospects for ultrathin solar cells. Nat. Energy 5, 959–972 (2020)

    Article  Google Scholar 

  4. Y. Wang, A. Vogel, M. Sachs et al., Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 4, 746–760 (2019)

    Article  CAS  Google Scholar 

  5. Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019)

    Article  CAS  Google Scholar 

  6. W. Tong, M. Forster, F. Dionigi et al., Electrolysis of low-grade and saline surface water. Nat. Energy 5, 367–377 (2020)

    Article  CAS  Google Scholar 

  7. Y. Liang, H. Dong, D. Aurbach et al., Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020)

    Article  CAS  Google Scholar 

  8. J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Beluco, A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions. Sol. Energy 195, 703–724 (2020)

    Article  Google Scholar 

  9. P.H. Andersen, J.A. Mathews, M. Rask, Integrating private transport into renewable energy policy: the strategy of creating intelligent recharging grids for electric vehicles. Energy Policy 37(7), 2481–2486 (2009)

    Article  Google Scholar 

  10. A. Christidis, C. Koch, L. Pottel, G. Tsatsaronis, The contribution of heat storage to the profitable operation of combined heat and power plants in liberalized electricity markets. Energy 41(1), 75–82 (2012)

    Article  Google Scholar 

  11. Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019)

    Article  Google Scholar 

  12. M. Balaish, J.C. Gonzalez-Rosillo, K.J. Kim et al., Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 6, 227–239 (2021)

    Article  CAS  Google Scholar 

  13. F. Duffner, N. Kronemeyer, J. Tübke et al., Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6, 123–134 (2021)

    Article  CAS  Google Scholar 

  14. R. Tian, S.H. Park, P.J. King et al., Quantifying the factors limiting rate performance in battery electrodes. Nat. Commun. 10, 1933 (2019)

    Article  Google Scholar 

  15. J. Huang, P. Zhong, Y. Ha et al., Non-topotactic reactions enable high rate capability in Li-rich cathode materials. Nat. Energy 6, 706–714 (2021)

    Article  CAS  Google Scholar 

  16. A. Eftekhari, Lithium-ion batteries with high rate capabilities. ACS Sustain. Chem. Eng. 5(4), 2799–2816 (2017)

    Article  CAS  Google Scholar 

  17. M. Weiss, R. Ruess, J. Kasnatscheew et al., Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy Mater. 11, 2101126 (2021)

    Article  CAS  Google Scholar 

  18. G.A. Elia, K.V. Kravchyk, M.V. Kovalenko, J. Chacon, A. Holland, R.G.A. Wills, An overview and prospective on Al and Al-ion battery technologies. J. Power Sour. 481, 228870 (2021)

    Article  CAS  Google Scholar 

  19. A. Holland, R.D. Mckerracher, A. Cruden, R.G.A. Wills, An aluminium battery operating with an aqueous electrolyte. J. Appl. Electrochem. 48, 243–250 (2018)

    Article  CAS  Google Scholar 

  20. K. Novoselov, A. Geim, S. Morozov et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  CAS  Google Scholar 

  21. A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)

    Article  CAS  Google Scholar 

  22. K. Novoselov, V. Fal′ko, L. Colombo et al., A roadmap for graphene. Nature 490, 192–200 (2012)

    Article  CAS  Google Scholar 

  23. P. Kumar, B. Das, B. Chitara, K.S. Subrahmanyam, K. Gopalakrishnan, S.B. Krupanidhi, C.N.R. Rao, Novel radiation-induced properties of graphene and related materials. Macromol. Chem. Phys. 213, 1146–1163 (2012)

    Article  CAS  Google Scholar 

  24. P. Kumar, L.S. Panchakarla, C.N.R. Rao, Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons. Nanoscale 3, 2127–2129 (2011)

    Article  CAS  Google Scholar 

  25. P. Kumar, S.S.R.K.C. Yamijala, S.K. Pati, Optical unzipping of carbon nanotubes in liquid media. J. Phys. Chem. C 120(30), 16985–16993 (2016)

    Article  CAS  Google Scholar 

  26. P. Kumar, A. Dey, J. Roques et al., Photoexfoliation synthesis of 2D materials. ACS Mater. Lett. 4(2), 263–270 (2022)

    Article  CAS  Google Scholar 

  27. P. Ranjan, S. Agrawal et al., A low-cost non-explosive synthesis of graphene oxide for scalable applications. Sci. Rep. 8, 12007 (2018)

    Article  Google Scholar 

  28. C.N.R. Rao, K.S. Subrahmanyam, H.S.S.R. Matte et al., A study of the synthetic methods and properties of graphenes. Sci. Technol. Adv. Mater. 11(5), 054502 (2010)

    Article  CAS  Google Scholar 

  29. M. Motlag, P. Kumar, K.Y. Hu, S. Jin et al., Asymmetric 3D elastic-plastic strain-modulated electron energy structure in monolayer graphene by laser shocking. Adv. Mater. 31, 1900597 (2019)

    Article  Google Scholar 

  30. P. Kumar et al., Photoluminescence, white light emitting properties and related aspects of ZnO nanoparticles admixed with graphene and GaN. Nanotechnology 21, 385701 (2010)

    Article  Google Scholar 

  31. A. Qurashi, K.S. Subrahmanyam, P. Kumar, Nanofiller graphene–ZnO hybrid nanoarchitecture: optical, electrical and optoelectronic investigation. J. Mater. Chem. C 3, 11959–11964 (2015)

    Article  CAS  Google Scholar 

  32. Y. Hu, S. Lee, P. Kumar et al., Water flattens graphene wrinkles: laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays. Nanoscale 7, 19885–19893 (2015)

    Article  CAS  Google Scholar 

  33. S. Lee, P. Kumar, Y. Hu et al., Graphene laminated gold bipyramids as sensitive detection platforms for antibiotic molecules. Chem. Commun. 51(85), 15494–15497 (2015)

    Article  CAS  Google Scholar 

  34. S.R. Das, Q. Nian, M. Saei et al., Single-layer graphene as a barrier layer for intense UV laser-induced damages for silver nanowire network. ACS Nano 9(11), 11121–11133 (2015)

    Article  CAS  Google Scholar 

  35. R. Bhushan, P. Kumar, A.K. Thakur, Catalyst-free solvothermal synthesis of ultrapure elemental N- and B-doped graphene for energy storage application. Solid State Ionics 353, 115371 (2020)

    Article  CAS  Google Scholar 

  36. J. Liu, P. Kumar, Y. Hu et al., Enhanced multi-photon emission from CdTe/ZnS quantum dots decorated on single layer graphene. J. Phys. Chem. C 119(11), 6331–6336 (2015)

    Article  CAS  Google Scholar 

  37. J. Liu, P. Kumar, X. Liu et al., Enhanced energy transfer from nitrogen-vacancy centers to three-dimensional graphene heterostructures by laser nanoshaping. Adv. Optic. Mater. 9, 2001830 (2021)

    Article  CAS  Google Scholar 

  38. H.-H. Chang, T.-H. Ho, Y.-S. Su, Graphene-enhanced battery components in rechargeable lithium-ion and lithium metal batteries. J. Carbon Res. 7, 65 (2021)

    Article  CAS  Google Scholar 

  39. Y. Hu, P. Kumar, Y. Xuan et al., Controlled and stabilized light-matter interaction in graphene: plasmonic film with large-scale 10-nm lithography. Adv. Opt. Mater. 4, 1811–1823 (2016)

    Article  CAS  Google Scholar 

  40. N.P. Neupane, A.K. Kushwaha et al., Anti-bacterial efficacy of bio-fabricated silver nanoparticles of aerial part of Moringa oleifera lam: rapid green synthesis, in-vitro and in-silico screening. Biocatal. Agric. Biotechnol. 9, 102229 (2022)

    Article  Google Scholar 

  41. Md. Imran, Md. Alam et al., Highly photocatalytic active r-GO/Fe3O4 nanocomposites development for enhanced photocatalysis application: a facile low-cost preparation and characterization. Ceram. Int. 47, 31973–31982 (2021)

    Article  CAS  Google Scholar 

  42. M. Kujawska, S.K. Bhardwaj, Y.K. Mishra, A. Kaushik, Using graphene-based biosensors to detect dopamine for efficient Parkinson’s disease diagnostics. Biosensors 11, 433 (2021)

    Article  CAS  Google Scholar 

  43. S.K. Bhardwaj, M. Mujawar et al., Bio-inspired graphene-based nano-systems for biomedical applications. Nanotechnology 32, 502001 (2021)

    Article  CAS  Google Scholar 

  44. M. Gwiazda et al., A flexible immunosensor based on the electrochemically rGO with Au SAM using half-antibody for collagen type I sensing. Appl. Surf. Sci. Adv. 9, 100258 (2022)

    Article  Google Scholar 

  45. C.A.M. Camacho, J.R.M. Torres et al., Sustainability metrics for real case applications of the supply chain network design problem: a systematic literature review. J. Clean. Prod. 231, 600–618 (2019)

    Article  Google Scholar 

  46. Y.Y. Lee, K.H. Tu, Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method. ACS Nano 5, 6564–6570 (2011)

    Article  CAS  Google Scholar 

  47. L.R. Stromberg, J.A. Hondred, D. Sanborn et al., Stamped multilayer graphene laminates for disposable in-field electrodes: application to electrochemical sensing of hydrogen peroxide and glucose. Microchim Acta 186, 533 (2019)

    Article  CAS  Google Scholar 

  48. P. Kumar et al., Photoexfoliation synthesis of 2D materials. ACS Mater. Lett. 4, 263–267 (2022)

    Article  CAS  Google Scholar 

  49. T.K. Sahu, P. Ranjan, P. Kumar, Chemical exfoliation synthesis of boron nitride and molybdenum disulfide 2D sheets via modified Hummers’ method. Emergent Mater. 4, 645 (2021)

    Article  CAS  Google Scholar 

  50. P. Ranjan et al., Freestanding borophene and its hybrids. Adv. Mater. 31, 1900353 (2019)

    Article  Google Scholar 

  51. S. Chahal et al., Borophene via micromechanical exfoliation. Adv. Mater. 33, 2102039 (2021)

    Article  CAS  Google Scholar 

  52. K. Vishwakarma et al., Quantum coupled borophene based heterolayers for excitonic and molecular sensing applications. Phys. Chem. Chem. Phys. 24, 12816 (2022)

    Article  CAS  Google Scholar 

  53. P. Ranjan et al., Borophene: new sensation in Flatland. Adv. Mater. 32, 2000531 (2020)

    Article  CAS  Google Scholar 

  54. E. Samuel Reich, Phosphorene excites materials scientists. Nature 506, 19 (2014)

    Article  CAS  Google Scholar 

  55. S. Chahal et al., Microwave synthesized 2D gold and its 2D–2D hybrids. J. Phys. Chem. Lett. 13, 6487–6495 (2022)

    Article  CAS  Google Scholar 

  56. S. Chahal et al., Microwave synthesis of hematene and other two-dimensional oxides. ACS Materials Letters 3, 631–640 (2021)

    Article  CAS  Google Scholar 

  57. S. Chahal et al., Microwave flash synthesis of phosphorus and sulphur ultradoped graphene. Chem. Eng. J. 450, 138447 (2022)

    Article  CAS  Google Scholar 

  58. T.K. Sahu, M. Motlag, A. Bandyopadhyay, N. Kumar, G.J. Cheng, P. Kumar, 2+δ-Dimensional materials via atomistic Z-welding. Adv. Sci. (2022). https://doi.org/10.1002/advs.202202695

    Article  Google Scholar 

  59. I. Pradhan et al., Freestanding silver-doped zinc oxide 2D crystals synthesized by a surface energy-controlled hydrothermal strategy. ACS Appl. Nano Mater. 4, 10534–10544 (2021)

    Article  CAS  Google Scholar 

  60. P. Ranjan et al., 2D materials: increscent quantum flatland with immense potential for applications. Nano Converg. (2022). https://doi.org/10.1186/s40580-022-00317

    Article  Google Scholar 

Download references

Acknowledgments

PK acknowledges SERB, Govt. of India for a research grant under the Ramanujan Fellowship (sanction no. SB/S2/RJN-205/2014). PR acknowledges SERB for research grant (SRG/2022/000192). Authors acknowledge the Indian Institute of Technology Patna for providing research facilities.

Author information

Authors and Affiliations

Authors

Contributions

PK conceived the idea. HR carried out all experimental work on liquid phase batteries. PR and TKS helped with characterizations of GO and RGO materials and RKS helped with wettability measurements. PK analysed all the data. PK and PR wrote the paper. PK oversaw the project.

Corresponding author

Correspondence to Prashant Kumar.

Ethics declarations

Conflict of interest

We declare no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1830 KB)

Supplementary file2 (MP4 62834 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, H., Ranjan, P., Sahu, T.K. et al. Reduced graphene oxide electrode-coating as anti-corrosive/anti-oxidative laminate for Al/Cu liquid-phase batteries. Journal of Materials Research 38, 1792–1802 (2023). https://doi.org/10.1557/s43578-022-00814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00814-9

Navigation