Skip to main content

Advertisement

Log in

Peridynamic simulations of damage in indentation and scratching of 3C-SiC

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The cubic silicon carbide (3C-SiC) has broad application prospects due to its excellent properties. The modeling of damage in 3C-SiC due to contact loads is important yet challenging. In this paper, simulations based on peridynamics theory are proposed to model damage of 3C-SiC in indentation and scratching. In indentation, the pop-in phenomenon of load-depth curve and initiation and propagation of cracks are observed. During scratching, the specific cutting energy (energy consumed per unit volume of material removed) increases nonlinearly with the decrease of scratching depth. Initiation and propagation of radical cracks on both sides of the groove are found. In addition, for scratching with double indenters, the volume of material removal is more than twice that of scratching with an indenter when indenter interval is less than the threshold. This paper demonstrates that peridynamics is a powerful tool to investigate damage in indentation and scratching of brittle materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. D.N. Talwar, J.C. Sherbondy, Thermal expansion coefficient of 3C–SiC. Appl. Phys. Lett. 67(22), 3301–3303 (1995)

    Article  CAS  Google Scholar 

  2. H. Guo et al., Epitaxial growth and electrical performance of graphene/3C–SiC films by laser CVD. J. Alloys Compd. 826, 154198 (2020)

    Article  CAS  Google Scholar 

  3. N. Biscay et al., Behavior of silicon carbide materials under dry to hydrothermal conditions. Nanomaterials 11(5), 1351 (2021)

    Article  CAS  Google Scholar 

  4. P. Mélinon et al., Playing with carbon and silicon at the nanoscale. Nat. Mater. 6(7), 479–490 (2007)

    Article  Google Scholar 

  5. M. Yoshida et al., Pressure-induced phase transition in SiC. Phys. Rev. B 48(14), 10587 (1993)

    Article  CAS  Google Scholar 

  6. D. Tian et al., In situ investigation of nanometric cutting of 3C-SiC using scanning electron microscope. Int. J. Adv. Manuf. Technol. 115(7), 2299–2312 (2021)

    Article  Google Scholar 

  7. S. Zhao, R. Flanagan, E.N. Hahn et al., Shock-induced amorphization in silicon carbide. Acta Mater. 158, 206–213 (2018)

    Article  CAS  Google Scholar 

  8. A. Nawaz et al., Nanoscale elastic-plastic deformation and mechanical properties of 3C-SiC thin film using nanoindentation. Int. J. Appl. Ceram. Technol. 16(2), 706–717 (2019)

    Article  CAS  Google Scholar 

  9. M. Alam et al., Finite element modeling of brittle and ductile modes in cutting of 3C-SiC. Crystals 11(11), 1286 (2021)

    Article  CAS  Google Scholar 

  10. L. Zhao et al., Atomistic origin of brittle-to-ductile transition behavior of polycrystalline 3C–SiC in diamond cutting. Ceram. Int. 47(17), 23895–23904 (2021)

    Article  CAS  Google Scholar 

  11. M. Mishra, I. Szlufarska, Possibility of high-pressure transformation during nanoindentation of SiC. Acta Mater. 57(20), 6156–6165 (2009)

    Article  CAS  Google Scholar 

  12. S. Goel et al., Anisotropy of single-crystal 3C-SiC during nanometric cutting. Model. Simul. Mater. Sci. Eng. 21(6), 065004 (2013)

    Article  CAS  Google Scholar 

  13. D. Liao et al., Analysis of elastic-plastic deformation law on 3C-SiC ceramic parts with different indenters by nanoindentation via molecular dynamics simulation. JOM 74, 2277–2286 (2022)

    Article  Google Scholar 

  14. J.N. Reddy, Introduction to the Finite Element Method (McGraw-Hill Education, New York, 2019)

    Google Scholar 

  15. S. Ma, X. Zhang, X.M. Qiu, Comparison study of MPM and SPH in modeling hypervelocity impact problems. Int. J. Impact Eng. 36(2), 272–282 (2009)

    Article  Google Scholar 

  16. L. Zhao et al., Depth-sensing ductile and brittle deformation in 3C-SiC under Berkovich nanoindentation. Mater. Des. 197, 109223 (2021)

    Article  CAS  Google Scholar 

  17. Y. Liu et al., Smoothed particle hydrodynamics simulation and experimental analysis of SiC ceramic grinding mechanism. Ceram. Int. 44(11), 12194–12203 (2018)

    Article  CAS  Google Scholar 

  18. N. Duan et al., Analysis of grit interference mechanisms for the double scratching of monocrystalline silicon carbide by coupling the FEM and SPH. Int. J. Mach. Tools Manuf. 120, 49–60 (2017)

    Article  Google Scholar 

  19. V. Anicode, C. Diyaroglu, E. Madenci, Peridynamic modeling of damage due to multiple sand particle impacts in the presence of contact and friction, in AIAA Scitech 2020 Forum, 2020.

  20. S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  Google Scholar 

  21. M. Isiet, I. Mikovi, S. Mikovi, Review of peridynamic modelling of material failure and damage due to impact. Int. J. Impact Eng 147, 103740 (2021)

    Article  Google Scholar 

  22. R.W. Macek, S.A. Silling, Peridynamics via finite element analysis. Finite Elem. Anal. Des. 43(15), 1169–1178 (2007)

    Article  Google Scholar 

  23. S.A. Silling et al., Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)

    Article  Google Scholar 

  24. S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83(17–18), 1526–1535 (2005)

    Article  Google Scholar 

  25. J.A. Mitchell, A nonlocal, ordinary, state-based plasticity model for peridynamics. No. SAND2011-3166 (Sandia National Laboratories (SNL), Albuquerque/Livermore, 2011).

  26. N. Liu, D. Liu, Wu. Zhou, Peridynamic modelling of impact damage in three-point bending beam with offset notch. Appl. Math. Mech. 38(1), 99–110 (2017)

    Article  Google Scholar 

  27. S. Niazi, Z. Chen, F. Bobaru, Crack nucleation in brittle and quasi-brittle materials: a peridynamic analysis. Theoret. Appl. Fract. Mech. 112, 102855 (2021)

    Article  Google Scholar 

  28. O. Karpenko, S. Oterkus, E. Oterkus, Peridynamic analysis to investigate the influence of microstructure and porosity on fatigue crack propagation in additively manufactured Ti6Al4V. Eng. Fract. Mech. 261, 108212 (2022)

    Article  Google Scholar 

  29. Y. Wu et al., A peridynamic model for dynamic fracture of layered engineered cementitious composites. Acta Mech. Solida Sin. 35, 661–671 (2022)

    Article  Google Scholar 

  30. S. Shang et al., A bond-based peridynamic modeling of machining of unidirectional carbon fiber reinforced polymer material. Int. J. Adv. Manuf. Technol. 102(9), 4199–4211 (2019)

    Article  Google Scholar 

  31. E. Postek, T. Sadowski, M. Boniecki, Impact of brittle composites: peridynamics modelling. Mater. Today: Proceedings 45, 4268–4274 (2021)

    CAS  Google Scholar 

  32. L. Wang, X. Sheng, J. Luo, A peridynamic frictional contact model for contact fatigue crack initiation and propagation. Eng. Fract. Mech. 264, 108338 (2022)

    Article  Google Scholar 

  33. Z. Li et al., Nonlocal steady-state thermoelastic analysis of functionally graded materials by using peridynamic differential operator. Appl. Math. Model. 93, 294–313 (2021)

    Article  Google Scholar 

  34. D. He, D. Huang, D. Jiang, Modeling and studies of fracture in functionally graded materials under thermal shock loading using peridynamics. Theoret. Appl. Fract. Mech. 111, 102852 (2021)

    Article  Google Scholar 

  35. Y. Cao et al., Modeling the nanoindentation response of silicate glasses by peridynamic simulations. J. Am. Ceram. Soc. 104(7), 3531–3544 (2021)

    Article  CAS  Google Scholar 

  36. S. Ebrahimi, D. Steigmann, K. Komvopoulos, Peridynamics analysis of the nanoscale friction and wear properties of amorphous carbon thin films. J. Mech. Mater. Struct. 10(5), 559–572 (2015)

    Article  Google Scholar 

  37. A. Datye, H.-T. Lin, Energy analysis of spherical and Berkovich indentation contact damage in commercial polycrystalline silicon carbide. Ceram. Int. 43(1), 800–809 (2017)

    Article  CAS  Google Scholar 

  38. Z. Qiu et al., Crack propagation and the material removal mechanism of glass–ceramics by the scratch test. J. Mech. Behav. Biomed. Mater. 64, 75–85 (2016)

    Article  CAS  Google Scholar 

  39. L. Zhao et al., Amorphization-governed elasto-plastic deformation under nanoindentation in cubic (3C) silicon carbide. Ceram. Int. 46(8), 12470–12479 (2020)

    Article  CAS  Google Scholar 

  40. Bo. Zhu, D. Zhao, H. Zhao, A study of deformation behavior and phase transformation in 4H-SiC during nanoindentation process via molecular dynamics simulation. Ceram. Int. 45(4), 5150–5157 (2019)

    Article  CAS  Google Scholar 

  41. D. Huang, Lu. Guangda, P. Qiao, An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. Int. J. Mech. Sci. 94, 111–122 (2015)

    Article  Google Scholar 

  42. M.L. Parks, et al., Peridigm users’ guide. Techincal Report SAND2012-7800 (Sandia National Laboratories (SNL), Albuquerque, 2012).

  43. S. Nagappa, M. Zupan, C.A. Zorman, Mechanical characterization of chemical-vapor-deposited polycrystalline 3C silicon carbide thin films. Scr. Mater. 59(9), 995–998 (2008)

    Article  CAS  Google Scholar 

  44. C.A. Klein, G.F. Cardinale, Young’s modulus and Poisson’s ratio of CVD diamond. Diam. Relat. Mater. 2(5–7), 918–923 (1993)

    Article  CAS  Google Scholar 

  45. F. Bobaru, Hu. Wenke, The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176(2), 215–222 (2012)

    Article  Google Scholar 

  46. F. Zhang et al., Friction behavior in nanoscratching of reaction bonded silicon carbide ceramic with Berkovich and sphere indenters. Tribol. Int. 97, 21–30 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by Beijing Natural Science Foundation (Nos. L212025 and 3202024), NSAF (No. U2130108), National Natural Science Foundation of China (No. 51875405), Tribology Science Fund of State Key Laboratory of Tribology in Advanced Equipment (No. SKLTKF20B13), and Beijing Institute of Technology Research Fund Program for Young Scholars.

Author information

Authors and Affiliations

Authors

Contributions

YX contributed toward methodology, software, data curation, formal analysis, writing—original draft, and visualization. PZ contributed toward conceptualization, validation, resources, writing—review and editing, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Pengzhe Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1470 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhu, P. Peridynamic simulations of damage in indentation and scratching of 3C-SiC. Journal of Materials Research 37, 4381–4391 (2022). https://doi.org/10.1557/s43578-022-00812-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00812-x

Keywords

Navigation