Skip to main content

Advertisement

Log in

Laser-induced graphene-based miniaturized, flexible, non-volatile resistive switching memory devices

  • Article
  • FOCUS ISSUE: Two-dimensional Materials for Future Generation Energy Storage Applications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Due to the growing popularity of wearable electronics, flexible memory devices are in great demand. The manufacturing method, materials synthesis, and device structure are key obstacles realize the deployable flexible memory devices. Herein, a single-step process of new and highly conductive porous laser-induced graphene (LIG) has been examined which offers higher electrical conductivity, porous structure and flexibility. Also, surface morphology, crystallinity, functional groups in LIG, and oxygen vacancies in MnO2 nanoparticles have been comprehensively studied for memristor. The, Ion/Ioff ratio of LIG and LIG/MnO2 was 9.15 and 6.8, respectively. The drop casting of MnO2 nanoparticles on LIG increases conductivity with oxygen vacancies, improving memristor behaviour of limited Ion/Ioff ratio. The LIG fluid-based memristor with MnO2 as a metal liquid has outstanding resistance switching capabilities. Moreover, the LIG has showed remarkable performance both substrate and active material for memristor in flexible, wearable, and fluid-based electronics applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. H.E. Lee, J.H. Park, T.J. Kim, D. Im, J.H. Shin, D.H. Kim, B. Mohammad, I.S. Kang, K.J. Lee, Novel electronics for flexible and neuromorphic computing. Adv. Funct. Mater. 28, 1–18 (2018). https://doi.org/10.1002/adfm.201801690

    Article  CAS  Google Scholar 

  2. M.A. Zidan, J.P. Strachan, W.D. Lu, The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8

    Article  Google Scholar 

  3. Z. Zhou, F. Yang, S. Wang, L. Wang, X. Wang, C. Wang, Y. Xie, Q. Liu, Topical review emerging of two-dimensional materials in novel memristor. 17 (2022)

  4. T.Y. Wang, J.L. Meng, M.Y. Rao, Z.Y. He, L. Chen, H. Zhu, Q.Q. Sun, S.J. Ding, W.Z. Bao, P. Zhou, D.W. Zhang, Three-dimensional nanoscale flexible Memristor Networks with ultralow power for information transmission and processing application. Nano Lett. 20, 4111–4120 (2020). https://doi.org/10.1021/acs.nanolett.9b05271

    Article  CAS  Google Scholar 

  5. X. Yan, Z. Zhou, J. Zhao, Q. Liu, H. Wang, G. Yuan, J. Chen, Flexible memristors as electronic synapses for neuro-inspired computation based on scotch tape-exfoliated mica substrates. Nano Res. 11, 1183–1192 (2018). https://doi.org/10.1007/s12274-017-1781-2

    Article  CAS  Google Scholar 

  6. G.A. Illarionov, S.M. Morozova, V.V. Chrishtop, M.A. Einarsrud, M.I. Morozov, Memristive TiO2: synthesis, technologies, and applications. Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.00724

    Article  Google Scholar 

  7. L. He, K. Wen, Z. Zhang, L. Ye, W. Lv, J. Fei, S. Zhang, W. He, Advanced materials for flexible electrochemical energy storage devices. J. Mater. Res. (2018). https://doi.org/10.1557/jmr.2018.232

    Article  Google Scholar 

  8. L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011). https://doi.org/10.1007/s00339-011-6264-9

    Article  CAS  Google Scholar 

  9. L.O. Chua, How we predicted the memristor. Nat. Electron. 1, 322 (2018). https://doi.org/10.1038/s41928-018-0074-4

    Article  Google Scholar 

  10. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008). https://doi.org/10.1038/nature06932

    Article  CAS  Google Scholar 

  11. O. Krestinskaya, A. Irmanova, A.P. James, Memristors : Properties, Models , Materials 13–40.

  12. K. Ueda, H. Itou, H. Asano, Photomemristors using carbon nanowall/diamond heterojunctions. J. Mater. Res. (2019). https://doi.org/10.1557/jmr.2018.498

    Article  Google Scholar 

  13. Q. Zhao, Z. Xie, Y.P. Peng, K. Wang, H. Wang, X. Li, H. Wang, J. Chen, H. Zhang, X. Yan, Current status and prospects of memristors based on novel 2D materials. Mater. Horizons. 7, 1495–1518 (2020). https://doi.org/10.1039/c9mh02033k

    Article  CAS  Google Scholar 

  14. K. Chen, Y. Yin, C. Song, Z. Liu, X. Wang, Y. Wu, J. Zhang, J. Zhao, M. Tang, J. Liu, Two-dimensional triphenylamine-based polymers for ultrastable volatile memory with ultrahigh on/off ratio. Polymer 230, 124076 (2021). https://doi.org/10.1016/j.polymer.2021.124076

    Article  CAS  Google Scholar 

  15. O.M.J. Van’t Erve, A.T. Hanbicki, A.L. Friedman, K.M. McCreary, E. Cobas, C.H. Li, J.T. Robinson, B.T. Jonker, Graphene and monolayer transition-metal dichalcogenides: properties and devices. J. Mater. Res. (2016). https://doi.org/10.1557/jmr.2015.397

    Article  Google Scholar 

  16. S. Fatima, X. Bin, M.A. Mohammad, D. Akinwande, S. Rizwan, Graphene and MXene based free-standing carbon memristors for flexible 2D memory applications. Adv. Electron. Mater. 2100549, 11–13 (2021). https://doi.org/10.1002/aelm.202100549

    Article  CAS  Google Scholar 

  17. P.P. Brisebois, M. Siaj, Harvesting graphene oxide-years, 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C. 8(2020), 1517–1547 (2020). https://doi.org/10.1039/c9tc03251g

    Article  CAS  Google Scholar 

  18. R.K. Singh, R. Kumar, D.P. Singh, Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv. 6, 64993–65011 (2016). https://doi.org/10.1039/c6ra07626b

    Article  CAS  Google Scholar 

  19. H.Y. Jeong, J.Y. Kim, J.W. Kim, J.O. Hwang, J.E. Kim, J.Y. Lee, T.H. Yoon, B.J. Cho, S.O. Kim, R.S. Ruoff, S.Y. Choi, Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 10, 4381–4386 (2010). https://doi.org/10.1021/nl101902k

    Article  CAS  Google Scholar 

  20. C. Wan, Y. Jiao, J. Li, Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J. Mater. Chem. A 5, 3819–3831 (2017). https://doi.org/10.1039/c6ta04844g

    Article  CAS  Google Scholar 

  21. X. Huang, L. Liu, S. Zhou, J. Zhao, Physical properties and device applications of graphene oxide, ArXiv. 15 (2019)

  22. V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, J. Zhang, A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7, 1564–1596 (2014). https://doi.org/10.1039/c3ee43385d

    Article  CAS  Google Scholar 

  23. R. Ye, D.K. James, J.M. Tour, Laser-induced graphene. Acc. Chem. Res. 51, 1609–1620 (2018). https://doi.org/10.1021/acs.accounts.8b00084

    Article  CAS  Google Scholar 

  24. M.G. Stanford, C. Zhang, J.D. Fowlkes, A. Ho, I.N. Ivanov, P.D. Rack, J.M. Tour, beyond the Visible Limit (2020), pp. 10–15

  25. L. Huang, J. Su, Y. Song, R. Ye, Laser-induced graphene: en route to smart sensing. Nano-Micro Lett. 12, 1–17 (2020). https://doi.org/10.1007/s40820-020-00496-0

    Article  CAS  Google Scholar 

  26. R. Ye, D.K. James, J.M. Tour, Laser-induced graphene: from discovery to translation. Adv. Mater. 31, 1–15 (2019). https://doi.org/10.1002/adma.201803621

    Article  CAS  Google Scholar 

  27. D.X. Luong, K. Yang, J. Yoon, S.P. Singh, T. Wang, C.J. Arnusch, J.M. Tour, Laser-induced graphene composites as multifunctional surfaces. ACS Nano (2019). https://doi.org/10.1021/acsnano.8b09626

    Article  Google Scholar 

  28. F. Mahmood, F. Mahmood, H. Zhang, J. Lin, C. Wan, Laser-induced graphene derived from Kraft lignin for flexible supercapacitors. ACS Omega 5, 14611–14618 (2020). https://doi.org/10.1021/acsomega.0c01293

    Article  CAS  Google Scholar 

  29. F. Wang, K. Wang, B. Zheng, X. Dong, X. Mei, J. Lv, W. Duan, W. Wang, Laser-induced graphene: preparation, functionalization and applications. Mater. Technol. 33, 340–356 (2018). https://doi.org/10.1080/10667857.2018.1447265

    Article  CAS  Google Scholar 

  30. F.J. Romero, A. Toral-Lopez, A. Ohata, D.P. Morales, F.G. Ruiz, A. Godoy, N. Rodriguez, Laser-fabricated reduced graphene oxide memristors. Nanomaterials 9, 1–13 (2019). https://doi.org/10.3390/nano9060897

    Article  CAS  Google Scholar 

  31. H. Tian, H.Y. Chen, T.L. Ren, C. Li, Q.T. Xue, M.A. Mohammad, C. Wu, Y. Yang, H.S.P. Wong, Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology. Nano Lett. 14, 3214–3219 (2014). https://doi.org/10.1021/nl5005916

    Article  CAS  Google Scholar 

  32. A. Kothuru, C.H. Rao, S.B. Puneeth, M. Salve, K. Amreen, S. Goel, Laser-Induced Flexible Electronics (LIFE) for sensing applications. IEEE Sens. J. 20, 7392–7399 (2020)

    Article  CAS  Google Scholar 

  33. P. Sudesh, N. Kumar, S. Das, C. Bernhard, G.D. Varma, Effect of graphene oxide doping on superconducting properties of bulk MgB2. Supercond. Sci. Technol. 26, S001–S005 (2013). https://doi.org/10.1088/0953-2048/26/9/095008

    Article  CAS  Google Scholar 

  34. V. Ţucureanu, A. Matei, A.M. Avram, FTIR spectroscopy for carbon family study. Crit. Rev. Anal. Chem. 46, 502–520 (2016). https://doi.org/10.1080/10408347.2016.1157013

    Article  CAS  Google Scholar 

  35. V.H. Pham, T.V. Cuong, S.H. Hur, E. Oh, E.J. Kim, E.W. Shin, J.S. Chung, Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone. J. Mater. Chem. 21, 3371–3377 (2011). https://doi.org/10.1039/c0jm02790a

    Article  CAS  Google Scholar 

  36. X. Bai, X. Tong, Y. Gao, W. Zhu, C. Fu, J. Ma, T. Tan, C. Wang, Y. Luo, H. Sun, Hierarchical multidimensional MnO2 via hydrothermal synthesis for high performance supercapacitors. Electrochim. Acta. 281, 525–533 (2018). https://doi.org/10.1016/j.electacta.2018.06.003

    Article  CAS  Google Scholar 

  37. A.M. Toufiq, F. Wang, Q.U.A. Javed, Q. Li, Y. Li, Hydrothermal synthesis of MnO2 nanowires: structural characterizations, optical and magnetic properties. Appl. Phys. A 116, 1127–1132 (2014). https://doi.org/10.1007/s00339-013-8195-0

    Article  CAS  Google Scholar 

  38. F.J. Romero, A. Toral, A. Medina-Rull, C.L. Moraila-Martinez, D.P. Morales, A. Ohata, A. Godoy, F.G. Ruiz, N. Rodriguez, Resistive switching in graphene oxide. Front. Mater. 7, 1–5 (2020). https://doi.org/10.3389/fmats.2020.00017

    Article  Google Scholar 

  39. N. Rodriguez, D. Maldonado, F.J. Romero, F.J. Alonso, A.M. Aguilera, A time series and quantum point contact. Materials 12(22), 3734 (2019)

    Article  CAS  Google Scholar 

  40. P. Rewatkar, P.K. Enaganti, M. Rishi, S. Mukhopadhyay, S. Goel, Single-step inkjet-printed paper-origami arrayed air-breathing microfluidic microbial fuel cell and its validation. Int. J. Hydrog. Energy. (2021). https://doi.org/10.1016/j.ijhydene.2021.08.102

    Article  Google Scholar 

  41. C.L. He, F. Zhuge, X.F. Zhou, M. Li, G.C. Zhou, Y.W. Liu, J.Z. Wang, B. Chen, W.J. Su, Z.P. Liu, Y.H. Wu, P. Cui, R.W. Li, Nonvolatile resistive switching in graphene oxide thin films. Appl. Phys. Lett. 95, 232101 (2009). https://doi.org/10.1063/1.3271177

    Article  CAS  Google Scholar 

  42. G. Khurana, P. Misra, R.S. Katiyar, Forming free resistive switching in graphene oxide thin film for thermally stable nonvolatile memory applications. J. Appl. Phys. 114, 124508 (2013). https://doi.org/10.1063/1.4823734

    Article  CAS  Google Scholar 

  43. E. Zhao, S. Liu, X. Liu, C. Wang, G. Liu, C. Xing, Flexible resistive switching memory devices based on graphene oxide polymer nanocomposite. NANO 15, 1005–1007 (2020). https://doi.org/10.1142/S1793292020501118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanket Goel.

Ethics declarations

Conflict of interest

All the authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enaganti, P.K., Kothuru, A. & Goel, S. Laser-induced graphene-based miniaturized, flexible, non-volatile resistive switching memory devices. Journal of Materials Research 37, 3976–3987 (2022). https://doi.org/10.1557/s43578-022-00590-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00590-6

Keywords

Navigation