Skip to main content
Log in

A simplistic approach to evaluate the power conversion efficiencies for hybrid charge transport layers in open-air fabricated perovskite solar cells

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Three perovskite solar cells with a general architecture of FTO/GO-CuI/Perovskite/ZnO/Ag electrode were fabricated with different ratios of graphene oxide and copper iodide as hybrid hole transport layers in an open-air environment for the comparison purposes and to find better hole transport material. The obtained power conversion efficiencies were extrapolated to find the power conversion efficiencies of other compositions of these materials including graphene oxide and copper iodide only-based devices. Hence, enhanced information was obtained by just making three devices only, which allowed us to save a lot of time and resources as compared to making devices in the standard conditions. The power conversion efficiency was increased with the decrease in concentration of graphene oxide, hence copper iodide showed better hole transport characteristics. This simplistic approach to evaluate power conversion efficiencies for hybrid charge transport layers can be utilized for any combination of hole or electron hybrid transport layers in perovskite solar cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. L.M. Gonçalves et al., Dye-sensitized solar cells: a safe bet for the future. Energy Environ. Sci. 1(6), 655–667 (2008)

    Article  CAS  Google Scholar 

  2. Z. Wu et al., Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6(18), 10505–10510 (2014)

    Article  CAS  Google Scholar 

  3. K. Ahmad, S.M. Mobin, Graphene oxide based planar heterojunction perovskite solar cell under ambient condition. New J. Chem. 41(23), 14253–14258 (2017)

    Article  CAS  Google Scholar 

  4. J. Niu et al., Graphene-oxide doped PEDOT:PSS as a superior hole transport material for high-efficiency perovskite solar cell. Org. Electron. 48, 165–171 (2017)

    Article  CAS  Google Scholar 

  5. Q.-D. Yang et al., Graphene oxide as an efficient hole-transporting material for high-performance perovskite solar cells with enhanced stability. Journal of Materials Chemistry A 5(20), 9852–9858 (2017)

    Article  CAS  Google Scholar 

  6. A. Agresti et al., Graphene–perovskite solar cells exceed 18% efficiency: a stability study. Chemsuschem 9(18), 2609–2619 (2016)

    Article  CAS  Google Scholar 

  7. M. Acik, S.B. Darling, Graphene in perovskite solar cells: device design, characterization and implementation. J. Mater. Chem. A 4(17), 6185–6235 (2016)

    Article  CAS  Google Scholar 

  8. E. Kymakis, D. Konios, Graphene oxide-like materials in organic and perovskite solar cells, in The Future of Semiconductor Oxides in Next-Generation Solar Cells. (Elsevier, Amsterdam, 2018), pp. 357–394

    Chapter  Google Scholar 

  9. M. Jawad et al., Effect of gold nanoparticles on transmittance and conductance of graphene oxide thin films and efficiency of perovskite solar cells. Appl. Nanosci. 10(2), 485–497 (2020)

    Article  CAS  Google Scholar 

  10. M. Bidikoudi, E. Kymakis, Novel approaches and scalability prospects of copper based hole transporting materials for planar perovskite solar cells. J. Mater. Chem. C 7(44), 13680–13708 (2019)

    Article  CAS  Google Scholar 

  11. A.M. Elseman et al., Recent progress concerning inorganic holetransport layers for efficient perovskite solar cells. Appl. Phys. A 125(7), 476 (2019)

    Article  CAS  Google Scholar 

  12. R. Rajeswari et al., Emerging of inorganic hole transporting materials for perovskite solar cells. Chem. Rec. 17(7), 681–699 (2017)

    Article  CAS  Google Scholar 

  13. S. Inudo, M. Miyake, T. Hirato, Electrical properties of Cu I films prepared by spin coating. Phys. Status Solidi A 210(11), 2395–2398 (2013)

    Article  CAS  Google Scholar 

  14. Peng, Y., et al., Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers. Applied Physics Letters, 2015. 106(24): p. 243302.

  15. W.-Y. Chen et al., Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. J. Mater. Chem. A 3(38), 19353–19359 (2015)

    Article  CAS  Google Scholar 

  16. W. Sun et al., Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells. Nanoscale 8(35), 15954–15960 (2016)

    Article  CAS  Google Scholar 

  17. M. Huangfu et al., Copper iodide as inorganic hole conductor for perovskite solar cells with different thickness of mesoporous layer and hole transport layer. Appl. Surf. Sci. 357, 2234–2240 (2015)

    Article  CAS  Google Scholar 

  18. J.A. Christians, R.C. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136(2), 758–764 (2014)

    Article  CAS  Google Scholar 

  19. J. Han et al., Enhancing the performance of perovskite solar cells by hybridizing SnS quantum dots with CH3NH3PbI3. Small 13(32), 1700953 (2017)

    Article  CAS  Google Scholar 

  20. V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83(10), 5447–5451 (1998)

    Article  CAS  Google Scholar 

  21. R. Azmi et al., High efficiency low-temperature processed perovskite solar cells integrated with alkali metal doped ZnO electron transport layers. ACS Energy Lett. 3(6), 1241–1246 (2018)

    Article  CAS  Google Scholar 

  22. D. Bi et al., Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale 5(23), 11686–11691 (2013)

    Article  CAS  Google Scholar 

  23. D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photon. 8(2), 133–138 (2014)

    Article  CAS  Google Scholar 

  24. B. Gil et al., Recent progress in inorganic hole transport materials for efficient and stable perovskite solar cells. Electron. Mater. Lett. 15(5), 505–524 (2019)

    Article  CAS  Google Scholar 

  25. J. Cao et al., Low-temperature solution-processed NiO x films for air-stable perovskite solar cells. J. Mater. Chem. A 5(22), 11071–11077 (2017)

    Article  CAS  Google Scholar 

  26. D.-Y. Lee, S.-I. Na, S.-S. Kim, Graphene oxide/PEDOT: PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 8(3), 1513–1522 (2016)

    Article  CAS  Google Scholar 

  27. Y. Wang et al., Ammonia-treated graphene oxide and PEDOT:PSS as hole transport layer for high-performance perovskite solar cells with enhanced stability. Org. Electron. 70, 63–70 (2019)

    Article  CAS  Google Scholar 

  28. H. Luo et al., Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT:PSS hole transport layer. Nano-Micro Lett. 9(4), 39 (2017)

    Article  CAS  Google Scholar 

  29. D. Li et al., Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells. Sol. Energy 131, 176–182 (2016)

    Article  CAS  Google Scholar 

  30. W.-D. Hu et al., Copper iodide-PEDOT:PSS double hole transport layers for improved efficiency and stability in perovskite solar cells. J. Photochem. Photobiol. A 357, 36–40 (2018)

    Article  CAS  Google Scholar 

  31. X. Wang et al., Facile fabrication of reduced graphene oxide/CuI/PANI nanocomposites with enhanced visible-light photocatalytic activity. RSC Adv. 6(50), 44851–44858 (2016)

    Article  CAS  Google Scholar 

  32. X. Ma et al., Enhanced bacterial disinfection by CuI–BiOI/rGO hydrogel under visible light irradiation. RSC Adv. 11(33), 20446–20456 (2021)

    Article  CAS  Google Scholar 

  33. G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3(17), 8970–8980 (2015)

    Article  CAS  Google Scholar 

  34. Q. Wali et al., Advances in stability of perovskite solar cells. Org. Electron. 78, 105590 (2020)

    Article  CAS  Google Scholar 

  35. N. Suresh Kumar, K. Chandra Babu Naidu, A review on perovskite solar cells (PSCs), materials and applications. J. Materiom. 7(5), 940–956 (2021)

    Article  Google Scholar 

  36. Y. Cheng et al., Decomposition of organometal halide perovskite films on zinc oxide nanoparticles. ACS Appl. Mater. Interfaces 7(36), 19986–19993 (2015)

    Article  CAS  Google Scholar 

  37. A. Kojima et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  CAS  Google Scholar 

  38. Q. Chen et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136(2), 622–625 (2014)

    Article  CAS  Google Scholar 

  39. P. Luo et al., Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions. ACS Appl. Mater. Interfaces 7(4), 2708–2714 (2015)

    Article  CAS  Google Scholar 

  40. L.-L. Gao et al., Large-area high-efficiency perovskite solar cells based on perovskite films dried by the multi-flow air knife method in air. J. Mater. Chem. A 5(4), 1548–1557 (2017)

    Article  CAS  Google Scholar 

  41. D.C. Marcano et al., Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)

    Article  CAS  Google Scholar 

  42. A.K. Zak et al., Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int. J. Nanomed. 6, 1399 (2011)

    Google Scholar 

  43. S. Talam, S.R. Karumuri, N. Gunnam, Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol. 2012, 372505 (2012)

    Article  CAS  Google Scholar 

  44. L. Shahriary, A.A. Athawale, Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng 2(01), 58–63 (2014)

    Google Scholar 

  45. W. Muhammad et al., Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC Adv. 9(51), 29541–29548 (2019)

    Article  CAS  Google Scholar 

  46. A. Alkhouzaam et al., Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method. Ceram. Int. 46(15), 23997–24007 (2020)

    Article  CAS  Google Scholar 

  47. S. Pan, I.A. Aksay, Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. ACS Nano 5(5), 4073–4083 (2011)

    Article  CAS  Google Scholar 

  48. R.M. Alwan et al., Synthesis of zinc oxide nanoparticles via sol–gel route and their characterization. Nanosci. Nanotechnol. 5(1), 1–6 (2015)

    Google Scholar 

  49. C. Xie et al., Novel surface modification of ZnO QDs for paclitaxel-targeted drug delivery for lung cancer treatment. Dose Response 18(2), 1559325820926739 (2020)

    CAS  Google Scholar 

  50. Z. Abbasi et al., Binding efficiency of functional groups towards noble metal surfaces using graphene oxide—metal nanoparticle hybrids. Colloids Surf. A 611, 125858 (2020)

    Article  CAS  Google Scholar 

  51. W. Saeed et al., An insight into the binding behavior of graphene oxide and noble metal nanoparticles. J. Appl. Phys. 129(12), 125302 (2021)

    Article  CAS  Google Scholar 

  52. A.J. Shaikh et al., Binding strength of porphyrin−gold nanoparticle hybrids based on number and type of linker moieties and a simple method to calculate inner filter effects of gold nanoparticles using fluorescence spectroscopy. J. Phys. Chem. A 119(7), 1108–1116 (2015)

    Article  CAS  Google Scholar 

  53. A.J. Shaikh, Exploring the direction of charge transfer in Porphyrin—PbSe quantum dot hybrids. ChemistrySelect 1(8), 1678–1686 (2016)

    Article  CAS  Google Scholar 

  54. M. Mathesh et al., Facile synthesis of graphene oxide hybrids bridged by copper ions for increased conductivity. J. Mater. Chem. C 1(18), 3084–3090 (2013)

    Article  CAS  Google Scholar 

  55. V.A. Smirnov et al., Conductivity of graphene oxide films: Dependence from solvents and photoreduction. Chem. Phys. Lett. 583, 155–159 (2013)

    Article  CAS  Google Scholar 

  56. C. Yang et al., Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit. Proc. Natl. Acad. Sci. U.S.A. 113(46), 12929 (2016)

    Article  CAS  Google Scholar 

  57. V.M. Le Corre et al., Charge transport layers limiting the efficiency of perovskite solar cells: how to optimize conductivity, doping, and thickness. ACS Appl. Energy Mater. 2(9), 6280–6287 (2019)

    Article  CAS  Google Scholar 

  58. Y. Zhou, X. Li, H. Lin, To be higher and stronger—metal oxide electron transport materials for perovskite solar cells. Small 16(15), 1902579 (2020)

    Article  CAS  Google Scholar 

  59. M.S. Khan et al., Graphene quantum dot and iron co-doped TiO2 photocatalysts: Synthesis, performance evaluation and phytotoxicity studies. Ecotoxicol. Environ. Saf. 226, 112855 (2021)

    Article  CAS  Google Scholar 

  60. Q. Yuan et al., Cu2O/BiVO4 heterostructures: synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr(VI) under visible light. Chem. Eng. J. 255, 394–402 (2014)

    Article  CAS  Google Scholar 

  61. J. Peng et al., Developing an efficient NiCo2S4 cocatalyst for improving the visible light H2 evolution performance of CdS nanoparticles. Phys. Chem. Chem. Phys. 19(38), 25919–25926 (2017)

    Article  CAS  Google Scholar 

  62. Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Miner. 85(3–4), 543–556 (2000)

    Article  CAS  Google Scholar 

  63. S. Li et al., A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Met. 40(10), 2712–2729 (2021)

    Article  CAS  Google Scholar 

  64. D. Saranin et al., Copper iodide interlayer for improved charge extraction and stability of inverted perovskite solar cells. Materials 12(9), 1406 (2019)

    Article  CAS  Google Scholar 

  65. S. Uthayaraj et al., Powder pressed cuprous iodide (CuI) as a hole transporting material for perovskite solar cells. Materials 12(13), 2037 (2019)

    Article  CAS  Google Scholar 

  66. G. Venugopal et al., An investigation of the electrical transport properties of graphene-oxide thin films. Mater. Chem. Phys. 132(1), 29–33 (2012)

    Article  CAS  Google Scholar 

  67. Q. Shao, H. Lin, M. Shao, Determining locations of conduction bands and valence bands of semiconductor nanoparticles based on their band gaps. ACS Omega 5(18), 10297–10300 (2020)

    Article  CAS  Google Scholar 

  68. P.-H. Lee et al., High-efficiency perovskite solar cell using cobalt doped nickel oxide hole transport layer fabricated by NIR process. Sol. Energy Mater. Solar Cells. 208, 110352 (2020)

    Article  CAS  Google Scholar 

  69. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)

    Article  CAS  Google Scholar 

  70. W.J. Beek et al., Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J. Phys. Chem. B 109(19), 9505–9516 (2005)

    Article  CAS  Google Scholar 

  71. J.B. Coulter, D.P. Birnie, Assessing Tauc Plot slope quantification: ZnO thin films as a model system. Physica Status Solidi b 255(3), 1700393 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research described in this paper was partially financially supported by the Higher Education Commission of Pakistan under National Research Program for Universities with Reference No. 20-3369/R&D/HEC/14/978, which was awarded to Dr. A. J. Shaikh. Francis Agada is thankful to Queen Elizabeth Commonwealth Scholarship for his graduate studies, with reference no. FE-2019-100.

Author information

Authors and Affiliations

Authors

Contributions

ZA and FA performed bench work, ZA wrote the initial draft; AHK provided all help related to fabrication of perovskite solar cells, AMK provided help with the UV–Vis experiments; MB and MA helped with the SEM images and XRD experiments, AJS conceived the idea and was the major contributor in writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ahson Jabbar Shaikh.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 475 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, Z., Agada, F., Kamboh, A.H. et al. A simplistic approach to evaluate the power conversion efficiencies for hybrid charge transport layers in open-air fabricated perovskite solar cells. Journal of Materials Research 37, 1323–1340 (2022). https://doi.org/10.1557/s43578-022-00537-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00537-x

Keywords

Navigation