Skip to main content

Advertisement

Log in

The effect of number of chemical bonds on intrinsic adhesive strength of a silane coupling agent with metals: A first-principles study

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper presents a comparative investigation on intrinsic adhesive strength of a silane coupling agent with metal surfaces through first-principles calculations based on density functional theory. Focusing on a typical silane coupling agent, 3-aminopropyl triethoxy silane (APS), pure copper, and aluminum were selected as the bonding metal. A simple interface model of the silane coupling monomer on the metal surface was constructed under a tensile loading condition. When the number of chemical bonds at the interface is one, Cu has a smaller breaking strain of the bond with oxygen in the APS molecule than Al and demonstrates lower adhesive strength. On the other hand, as the number of bonds increases, the interface becomes stronger and the failure mode changes from interfacial debonding to intramolecular cohesive fracture. As a result, the adhesive strength is improved, and the effect is remarkable especially on the Cu surface.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Availability of data

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. E.P. Plueddemann, Reminiscing on silane coupling agents. J. Adhes. Sci. Technol. 5, 261–277 (1991)

    Article  CAS  Google Scholar 

  2. C.Y.K. Lung, J.P. Matinlinna, Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dent. Mater. 28, 467–477 (2012)

    Article  CAS  Google Scholar 

  3. P.R. Underhill, D.L. DuQuesnay, The dependence of the fatigue life of adhesive joints on surface preparation. Int. J. Adhes. Adhes. 26, 62–66 (2006)

    Article  CAS  Google Scholar 

  4. A.K. Hon, J.P. Matinlinna, Y. Shibata, T. Miyazaki, Evaluation of five silane coupling agents on resin-titanium adhesion. Int. J. Adhes. Adhes. 90, 132–137 (2019)

    Article  CAS  Google Scholar 

  5. F. Tan, X. Qiao, J. Chen, H. Wang, Effects of coupling agents on the properties of epoxy-based electrically conductive adhesives. Int. J. Adhes. Adhes. 26, 406–413 (2006)

    Article  CAS  Google Scholar 

  6. J. Sang, S. Aisawa, K. Miura, H. Hirahara, O. Jan, P. Jozef, M. Pavol, Adhesion of carbon steel and natural rubber by functionalized silane coupling agents. Int. J. Adhes. Adhes. 72, 70–74 (2017)

    Article  CAS  Google Scholar 

  7. M. Matsushima, Y. Kato, Y. Takechi, S. Fukumoto, K. Fujimoto, Effects of metal surface conditions on interfacial characteristics between metal and epoxy resin. Mater. Trans. 57, 881–886 (2016)

    Article  CAS  Google Scholar 

  8. Y. Guo, Y. Li, S. Wang, Z.X. Liu, B. Cai, P.C. Wang, Effect of silane treatment on adhesion of adhesive-bonded carbon fiber reinforced nylon 6 composite. Int. J. Adhes. Adhes. 91, 102–115 (2019)

    Article  CAS  Google Scholar 

  9. Y. Xie, C.A.S. Hill, Z. Xiao, H. Militz, C. Mai, Silane coupling agents used for natural fiber/polymer composites: a review. Composites A 41, 806–819 (2010)

    Article  Google Scholar 

  10. S.C. Chowdhury, J.W. Gillespie, Silica–silane coupling agent interphase properties using molecular dynamics simulations. J. Mater. Sci. 52, 12981–12998 (2017)

    Article  CAS  Google Scholar 

  11. Y. Zhao, X. Qi, J. Ma, L. Song, Y. Yang, Q. Yang, Interface of polyimide–silica grafted with different silane coupling agents: molecular dynamic simulation. J. Appl. Polym. Sci. 135, 45725 (2018). https://doi.org/10.1002/app.45725

    Article  CAS  Google Scholar 

  12. X. Zhuang, S. Zhou, Molecular dynamics study of an amorphous polyethylene/silica interface with shear tests. Materials 11, 929 (2018)

    Article  Google Scholar 

  13. Y. Tang, C. Tang, D. Hu, Y. Gui, Effect of aminosilane coupling agents with different chain lengths on thermo-mechanical properties of cross-linked epoxy resin. Nanomaterials 8, 951 (2018)

    Article  Google Scholar 

  14. H.P. Zhang, X. Lu, Y. Leng, L. Fang, S. Qu, B. Feng, J. Weng, J. Wang, Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coupling agents. Acta Biomater. 5, 1169–1181 (2009)

    Article  CAS  Google Scholar 

  15. J. Meng, N. Tajaddod, S.W. Cranford, M.L. Minus, Polyethylene-assisted exfoliation of hexagonal boron nitride in composite fibers: a combined experimental and computational study. Macromol. Chem. Phys. 216, 847–855 (2015)

    Article  CAS  Google Scholar 

  16. S.J. Nikkhah, M.R. Moghbeli, S.M. Hashemianzadeh, Dynamic study of deformation and adhesion of an amorphous polyethylene/graphene interface: a simulation study. Macromol. Theory Simul. 25, 533–549 (2016)

    Article  CAS  Google Scholar 

  17. E. Ozden-Yenigun, C. Atilgan, J.A. Elliott, Multi-scale modelling of carbon nanotube reinforced crosslinked interfaces. Comput. Mater. Sci. 129, 279–289 (2017)

    Article  CAS  Google Scholar 

  18. S. Yang, F. Gao, J. Qu, A molecular dynamics study of tensile strength between a highly-crosslinked epoxy molding compound and a copper substrate. Polymer 54, 5064–5074 (2013)

    Article  CAS  Google Scholar 

  19. D.B. Knorr Jr., K.S. Williams, N.F. Baril, C. Weiland, J.W. Andzelm, J.L. Lenhart, J.C. Woicik, D.A. Fischer, M.Z. Tidrow, S.V. Bandara, N.C. Henry, Use of 3-aminopropyltriethoxysilane deposited from aqueous solution for surface modification of III-V materials. Appl. Surf. Sci. 320, 414–428 (2014)

    Article  Google Scholar 

  20. J. Wu, L. Ling, J. Xie, G. Ma, B. Wang, Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: Experimental and theoretical study on the surface interaction. Chem. Phys. Lett. 591, 227–232 (2014)

    Article  CAS  Google Scholar 

  21. M. Miyazaki, Y. Kanegae, T. Iwasaki, Adhesion analysis of silane coupling agent/copper interface with density functional theory. Mech. Eng. J. 1, 1–10 (2014)

    Article  Google Scholar 

  22. M.S. Killian, S. Seiler, V. Wagener, R. Hahn, C. Ebensperger, B. Meyer, P. Schmuki, Interface chemistry and molecular bonding of functional ethoxysilane-based self-assembled monolayers on magnesium surfaces. ACS Appl. Mater. Interfaces 7, 9006–9014 (2015)

    Article  CAS  Google Scholar 

  23. K. Okada, H. Kimizuka, S. Ogata, First-principles analysis on adsorption and bonding of 3-aminopropyltrimethoxysilane on silica substrate. J. Soc. Mater. Sci. 67, 229–234 (2018). (in Japanese)

    Article  CAS  Google Scholar 

  24. M. Minamiyama, Y. Uetsuji, Y. Nakamura, First-principles study on adhesive strength of chromium layer/silane coupling agents interface. J. Soc. Mater. Sci. 67, 930–936 (2018). (in Japanese)

    Article  CAS  Google Scholar 

  25. Y. Uetsuji, T. Yagi, Y. Nakamura, Interfacial adhesive strength of a silane coupling agent with metals: a first principles study. Mater. Today Commun. 25, 101397 (2020)

    Article  CAS  Google Scholar 

  26. S. Ogata, Y. Umeno, M. Kohyama, First-principles approaches to intrinsic strength and deformation of materials: perfect crystals, nano-structures, surfaces and interfaces. Model. Simul. Mater. Sci. Eng. 17, 013001 (2009)

    Article  Google Scholar 

  27. X. Guo, Y. Zhang, Y.G. Jung, L. Li, J. Knapp, J. Zhang, Ideal tensile strength and shear strength of ZrO2(111)/Ni(111) ceramic-metal Interface: a first principle study. Mater. Des. 112, 254–262 (2016)

    Article  CAS  Google Scholar 

  28. X. Fan, B. Chen, M. Zhang, D. Li, Z. Liu, C. Xiao, First-principles calculations on bonding characteristic and electronic property of TiC(111)/TiN(111) interface. Mater. Des. 112, 282–289 (2016)

    Article  CAS  Google Scholar 

  29. S.R. Culler, H. Ishida, J.L. Koenig, Proc. 40th Annu. Conf. Reinf. Plast. Compos. Inst. 17A, 1 (1985)

    Google Scholar 

  30. H. Hozonji, O. Horie, M. Ogata, S. Numata, N. Kinjo, Improvement of mechanical properties for epoxy molding compounds by treatment of coupling agenton spherical filler. Kobunshi Ronbunshu 47, 483–490 (1990)

    Article  Google Scholar 

  31. M. Marrone, T. Montanari, G. Busca, L. Conzatti, G. Costa, M. Castellano, A. Turturo, A fourier transform infrared (FTIR) study of the reaction of triethoxysilane (TES) and bis[3-triethoxysilylpropyl] tetrasulfane (TESPT) with the surface of amorphous silica. J. Phys. Chem. B 108, 3563–3572 (2004)

    Article  CAS  Google Scholar 

  32. M.-C.B. Salon, P.-A. Bayle, M. Abdelmouleh, S. Boufic, M.N. Belgacem, Kinetics of hydrolysis and self condensation reactions of silanes by NMR spectroscopy. Colloids Surf. A 312, 83–91 (2008)

    Article  Google Scholar 

  33. Y. Nakamura, Y. Nishida, T. Fukuda, S. Fujii, M. Sasaki, Mechanical properties of silane-treated silica particle-filled polyisoprene composites: influence of the alkoxy group mixing ratio in silane coupling agent containing mercapto group. J. Appl. Polym. Sci. 128, 2548–2555 (2013)

    Article  CAS  Google Scholar 

  34. S. Naviroj, J.L. Koenig, H. Ishida, Diffuse reflectance fourier transform infrared spectroscopic study of chemical bonding and hydrothermal stability of an aminosilane on metal oxide surfaces. J. Adhes. 18, 93 (1985)

    Article  CAS  Google Scholar 

  35. J.D. Miller, H. Ishida, Quantitative intermolecular reaction of hydrolyzed trialkoxysilanes at submonolayer, monolayer, and multilayer surface coverages. Langmuir 2, 127–131 (1986)

    Article  CAS  Google Scholar 

  36. N. Ikuta, Z. Maekawa, H. Hamada, M. Ichihashi, E. Nishio, Evaluation of interfacial properties in glass fibre-epoxy resin composites — reconsideration of an embedded single filament shear-strength test. J. Mater. Sci. 26, 4663–4666 (1991)

    Article  CAS  Google Scholar 

  37. Y. Nakamura, H. Honda, A. Harada, S. Fujii, K. Nagata, Mechanical properties of silane-treated, silica-particle-filled polyisoprene rubber composites: effects of the loading amount and alkoxy group numbers of a silane coupling agent containing mercapto groups. J. Appl. Polym. Sci. 113, 1507–1514 (2009)

    Article  CAS  Google Scholar 

  38. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.H. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter. 14, 2717–2743 (2002)

    CAS  Google Scholar 

  39. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  40. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  CAS  Google Scholar 

  41. J.D. Pack, H.J. Monkhorst, “Special points for Brillouin-zone integrations”—a reply. Phys. Rev. B 16, 1748 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutomo Uetsuji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uetsuji, Y., Fukui, N., Yagi, T. et al. The effect of number of chemical bonds on intrinsic adhesive strength of a silane coupling agent with metals: A first-principles study. Journal of Materials Research 37, 923–932 (2022). https://doi.org/10.1557/s43578-022-00496-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00496-3

Keywords

Navigation