Skip to main content
Log in

Copper oxide nanoparticles confined in TiO2 nanotubes for the water–gas shift reaction: promotional effect of potassium

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Previous work showed that the copper oxide nanoparticles confined in titania nanotubes (Cu-in-TiO2NT) can effectively enhance the water–gas shift (WGS) activity. The WGS activity is directly related to the concentration of active copper species and oxygen vacancies (Ov). The addition of potassium is found to enhance WGS activity of copper catalysts to some extent. Herein, the K-promoted copper oxide (2 wt% Cu) nanoparticles confined in TiO2 nanotubes catalysts (Cu-in-K/TiO2NT) with different potassium contents were synthesized and investigated for the WGS reaction. The K-promoted catalysts exhibit the enhanced WGS activity. Especially, the Cu-in-K20/TiO2NT with the molar ratio of K/Cu = 20 displays twofold higher WGS activity compared with the Cu-in-TiO2NT. XRD, Raman, XPS, H2-TPR and in situ DRIFTS have verified that the addition of appropriate potassium can make active copper species bound with oxygen of the TiO2, leading to a partial reduction of TiO2 to TiO2-x, which is beneficial to form Cu–Ov–Ti site for the WGS reaction.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S.S. Maluf, P.A.P. Nascente, E.M. Assaf, CuO and CuO-ZnO catalysts supported on CeO2 and CeO2-LaO3 for low temperature water-gas shift reaction. Fuel Process. Technol. 91, 1438–1445 (2010). https://doi.org/10.1016/j.fuproc.2010.05.021

    Article  CAS  Google Scholar 

  2. J.A. Rodriguez, J. Graciani, J. Evans, J.B. Park, F. Yang, D. Stacchiola, S.D. Senanayake, S.G. Ma, M. Pérez, P. Liu, J.F. Sanz, J. Hrbek, Water-gas shift reaction on a highly active inverse CeOx/Cu(111) catalyst: unique role of ceria nanoparticles. Angew. Chem. Int. Ed. 48, 8047–8050 (2009). https://doi.org/10.1002/anie.200903918

    Article  CAS  Google Scholar 

  3. D.W. Jeong, H.S. Na, J.O. Shim, W.J. Jang, H.S. Roh, A crucial role for the CeO2-ZrO2 support for the low temperature water gas shift reaction over Cu-CeO2-ZrO2 catalysts. Catal. Sci. Technol. 5, 3706–3713 (2015). https://doi.org/10.1039/C5CY00499C

    Article  CAS  Google Scholar 

  4. Z. Chen, F.X. Cao, W. Gao, Q.C. Dong, Y.Q. Qu, Uniform small metal nanoparticles anchored on CeO2 nanorods driven by electroless chemical deposition. Rare Met. 7, 806–814 (2020). https://doi.org/10.1007/s12598-019-01266-7

    Article  CAS  Google Scholar 

  5. Q.J. Pei, T. He, Y. Yu, Z.J. Jing, J.T. Wang, K.C. Tan, J.P. Guo, L. Liu, H.J. Cao, P. Chen, Fabrication of oxygen vacancies through assembling an amorphous titanate overlayer on titanium oxide for a catalytic water-gas shift reaction. J. Mater. Chem. A 9, 2784–2791 (2021). https://doi.org/10.1039/d0ta11641f

    Article  CAS  Google Scholar 

  6. T. Wähler, C. Hohner, Z.Z. Sun, R. Schuster, J. Rodríguez-Fernández, J.V. Lauritsen, J. Libuda, Dissociation of water on atomically-defined cobalt oxide nanoislands on Pt(111) and its effect on the adsorption of CO. J. Mater. Res. 34, 379–393 (2019). https://doi.org/10.1557/jmr.2018.388

    Article  CAS  Google Scholar 

  7. R. Si, J. Raitano, N. Yi, L.H. Zhang, S.W. Chan, M. Flytzani-Stephanopoulos, Structure sensitivity of the low-temperature water-gas shift reaction on Cu-CeO2 catalysts. Catal. Today 180, 68–80 (2012). https://doi.org/10.1016/j.cattod.2011.09.008

    Article  CAS  Google Scholar 

  8. A. Chen, X.J. Yu, Y. Zhou, S. Miao, Y. Li, S. Kuld, J. Sehested, J.Y. Liu, T. Aoki, S. Hong, M.F. Camellone, S. Fabris, J. Ning, C.C. Jin, C.W. Yang, A. Nefedov, C. Wöll, Y.M. Wang, W.J. Shen, Structure of the catalytically active copper-ceria interfacial perimeter. Nat. Catal. 2, 334–341 (2019). https://doi.org/10.1038/s41929-019-0226-6

    Article  CAS  Google Scholar 

  9. Y.L. Tian, C.L. An, Y. Wei, Y.C. Tao, H.Y. Zhang, L.W. Jiang, J.K. Tan, Y.T. Feng, Qian, Stable and dendrite-free lithium metal anodes enabled by carbon paper incorporated with ultrafine lithiophilic TiO2 derived from MXene and carbon dioxide. Chem. Eng. J. 406, 126836 (2021). https://doi.org/10.1016/j.cej.2020.126836

    Article  CAS  Google Scholar 

  10. N. Liu, M. Xu, Y.S. Yang, S.M. Zhang, J. Zhang, W.L. Wang, L.R. Zheng, S. Hong, M. Wei, Auδ–Ov-Ti3+ interfacial site: catalytic active center toward low-temperature water gas shift reaction. ACS Catal. 9, 2707–2717 (2019). https://doi.org/10.1021/acscatal.8b04913

    Article  CAS  Google Scholar 

  11. M. Xu, S. He, H. Chen, G.Q. Cui, L.R. Zheng, B. Wang, M. Wei, TiO2-x-modified Ni nanocatalyst with tunable metal-support interaction for water-gas shift reaction. ACS Catal. 7, 7600–7609 (2017). https://doi.org/10.1021/acscatal.8b04913

    Article  CAS  Google Scholar 

  12. C.S. Chen, T.C. Chen, C.C. Chen, Y.T. Lai, J.H. You, T.M. Chou, C.H. Chen, J.F. Lee, Effect of Ti3+ on TiO2-supported Cu catalysts used for CO oxidation. Langmuir 28, 9996–10006 (2012). https://doi.org/10.1021/la301684h

    Article  CAS  Google Scholar 

  13. M. Yang, M. Flytzani-Stephanopoulos, Design of single-atom metal catalysts on various supports for the low-temperature water-gas shift reaction. Catal. Today 298, 216–225 (2017). https://doi.org/10.1016/j.cattod.2017.04.034

    Article  CAS  Google Scholar 

  14. P. Panagiotopoulou, D.I. Kondarides, Effects of alkali promotion of TiO2 on the chemisorptive properties and water-gas shift activity of supported noble metal catalysts. J. Catal. 267, 57–66 (2009). https://doi.org/10.1016/j.jcat.2009.07.014

    Article  CAS  Google Scholar 

  15. J.H. Pazmiño, M. Shekhar, W.D. Williams, M.C. Akatay, J.T. Miller, W.N. Delgass, F.H. Ribeiro, Metallic Pt as active sites for the water-gas shift reaction on alkali-promoted supported catalysts. J. Catal. 286, 279–286 (2012). https://doi.org/10.1016/j.jcat.2011.11.017

    Article  CAS  Google Scholar 

  16. Y.X. Wang, G.C. Wang, A systematic theoretical study of water gas shift reaction on Cu(111) and Cu(110): potassium effect. ACS Catal. 9, 2261–2274 (2019). https://doi.org/10.1021/acscatal.8b04427

    Article  CAS  Google Scholar 

  17. J.A. Rodriguez, E.R. Remesal, P.J. Ramírez, I. Orozco, Z.Y. Liu, J. Graciani, S.D. Senanayake, J.F. Sanz, Water-gas shift reaction on K/Cu(111) and Cu/K/TiO2(110) surfaces: alkali promotion of water dissociation and production of H2. ACS Catal. 9, 10751–10760 (2019). https://doi.org/10.1021/acscatal.9b03922

    Article  CAS  Google Scholar 

  18. X.L. Pan, X.H. Bao, The effects of confinement inside carbon nanotubes on catalysis. Acc. Chem. Res. 44, 553–562 (2011). https://doi.org/10.1021/ar100160t

    Article  CAS  Google Scholar 

  19. Y.Q. Chen, X.N. Li, J. Li, L.P. Wu, X.J. Li, Cu nanoparticles confined in TiO2 nanotubes to enhance the water-gas shift reaction activity. Int. J. Green Energy 18, 595–601 (2021). https://doi.org/10.1080/15435075.2021.1875466

    Article  CAS  Google Scholar 

  20. Y.Y. Zhang, J.Z. Chen, X.J. Li, Preparation and photocatalytic performance of anatase/rutile mixed-phase TiO2 nanotubes. Catal. Lett. 139, 129–133 (2010). https://doi.org/10.1007/s10562-010-0425-x

    Article  CAS  Google Scholar 

  21. J.J. Xu, Z.L. Tian, G.H. Yin, T.Q. Lin, F.Q. Huang, Controllable reduced black titania with enhanced photoelectrochemical water splitting performance. Dalton. Trans. 46, 1047–1051 (2017). https://doi.org/10.1039/c6dt04060h

    Article  CAS  Google Scholar 

  22. X.L. Pan, Z.L. Fan, W. Chen, Y.J. Ding, H.Y. Luo, X.H. Bao, Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 6, 507–511 (2007). https://doi.org/10.1038/nmat1916

    Article  CAS  Google Scholar 

  23. F. Li, T.H. Han, H.G. Wang, X.M. Zheng, J.M. Wan, B.K. Ni, Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2-x nanocrystals. J. Mater. Res. 32, 1563–1572 (2017). https://doi.org/10.1557/jmr.2017.49

    Article  CAS  Google Scholar 

  24. A. Chauhan, R. Verma, K.M. Batoo, S. Kumari, R. Kalia, R. Kumar, M. Hadi, E.H. Raslan, A. Imran, Structural and optical properties of copper oxide nanoparticles: a study of variation in structure and antibiotic activity. J. Mater. Res. 36, 1496–1509 (2021). https://doi.org/10.1557/s43578-021-00193-7

    Article  CAS  Google Scholar 

  25. C.S. Chen, W.H. Cheng, S.S. Lin, Study of reverse water gas shift reaction by TPD, TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst. Appl. Catal. A Gen. 1, 55–67 (2003). https://doi.org/10.1016/S0926-860X(02)00221-1

    Article  Google Scholar 

  26. C. Lang, X. Sécordel, C. Courson, Copper-based water gas shift catalysts for hydrogen rich syngas production from biomass steam gasification. Energy Fuels 31, 12932–12941 (2017). https://doi.org/10.1021/acs.energyfuels.7b01765

    Article  CAS  Google Scholar 

  27. X.L. Guo, Z.H. Qiu, J.X. Mao, R.X. Zhou, Doping effect of transition metals (Zr, Mn, Ti and Ni) on well-shaped CuO/CeO2(rods): nano/micro structure and catalytic performance for selective oxidation of CO in excess H2. Phys. Chem. Chem. Phys. 20, 25983–25994 (2018). https://doi.org/10.1039/c8cp03696a

    Article  CAS  Google Scholar 

  28. Y.D. Zhang, L. Liang, Z.Y. Chen, J.J. Wen, W. Zhong, S.B. Zou, M.L. Fu, L.M. Chen, D.Q. Ye, Highly efficient Cu/CeO2-hollow nanospheres catalyst for the reverse water-gas shift reaction: Investigation on the role of oxygen vacancies through in situ UV-Raman and DRIFTS. Appl. Surf. Sci. 516, 146035 (2020). https://doi.org/10.1016/j.apsusc.2020.146035

    Article  CAS  Google Scholar 

  29. C.Q. Chen, H.J. Ren, Y.Y. He, Y.Y. Zhan, C.T. Au, Y. Luo, X.Y. Lin, S.J. Liang, L.L. Jiang, Unraveling the role of Cu0 and Cu+ sites in Cu/SiO2 catalysts for water-gas shift reaction. ChemCatChem 12, 4672–4679 (2020). https://doi.org/10.1002/cctc.202000523

    Article  CAS  Google Scholar 

  30. J.A. Rodriguez, J.C. Hanson, D. Stacchiola, S.D. Senanayake, In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts. Phys. Chem. Chem. Phys. 15, 12004–12025 (2013). https://doi.org/10.1039/c3cp50416f

    Article  CAS  Google Scholar 

  31. X. Yang, W.B. Wang, L.P. Wu, X.J. Li, T.J. Wang, S.J. Liao, Effect of confinement of TiO2 nanotubes over the Ru nanoparticles on Fischer-Tropsch synthesis. Appl. Catal. A Gen. 526, 45–52 (2016). https://doi.org/10.1016/j.apcata.2016.07.021

    Article  CAS  Google Scholar 

  32. W.Q. Xu, R. Si, S.D. Senanayake, J. Llorca, H. Idriss, D. Stacchiola, J.C. Hanson, J.A. Rodriguez, In situ studies of CeO2-supported Pt, Ru, and Pt-Ru alloy catalysts for the water-gas shift reaction: active phases and reaction intermediates. J. Catal. 291, 117–126 (2012). https://doi.org/10.1016/j.jcat.2012.04.013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study are funded by the Natural Science Foundation of Guangdong Province, China (Grant Number 2021A1515010445), National Natural Science Foundation of China (Grant Number 51802305) and the Science and Technology Program of Guangzhou, China (Grant Number 202102020402). The authors thanks for the support from the Analytical & Testing Center, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Li or Xinjun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, J., Li, X. et al. Copper oxide nanoparticles confined in TiO2 nanotubes for the water–gas shift reaction: promotional effect of potassium. Journal of Materials Research 36, 4475–4484 (2021). https://doi.org/10.1557/s43578-021-00416-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00416-x

Keywords

Navigation