Skip to main content

Advertisement

Log in

Emerging coaxial nanostructures for clean energy generation and storage systems: A minireview

  • Review
  • Focus Issue: Advanced Nanocatalysts for Electrochemical Energy Storage and Generation
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Coaxial nanomaterials (CxNMs) can be considered as nanocomposites that share at least one common axis. They have outstanding properties that make them of interesting in applications for clean energy generation and storage systems (CEGSS). In this minireview, we have made a compilation of the most recently published works (in the last 4 years) on CxNMs with application in CEGSS. First, we have proposed a classification for CxNMs based on their dimensionality. Then, the most used synthesis routes to obtain CxNMs and the correlation between synthesis parameters and their resulting properties are reviewed. Finally, the applications of CxNMs in rechargeable batteries, supercapacitors, and solar cells are discussed, highlighting the publications with the best performances and the key factors found by these authors.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

© MDPI.

Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. V.P. Sharma, U. Sharma, M. Chattopadhyay, V.N. Shukla, Advance applications of nanomaterials: a review. Mater. Today: Proc. 5(2), 6376 (2018)

    Google Scholar 

  2. S. Singh, P. Thiyagarajan, K.M. Kant, D. Anita, S. Thirupathiah, N. Rama, B. Tiwari, M. Kottaisamy, M.R. Rao, Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano. J. Phys. D Appl. Phys. 40(20), 6312 (2007)

    CAS  Google Scholar 

  3. M.P. Zhuo, X.D. Wang, L.S. Liao, Construction and optoelectronic applications of organic core/shell micro/nanostructures. Mater. Horiz. 7, 3161 (2020)

    CAS  Google Scholar 

  4. K.C. Ho, L.Y. Lin, A review of electrode materials based on core-shell nanostructures for electrochemical supercapacitors. J. Mater. Chem. A. 7(8), 3516 (2019)

    CAS  Google Scholar 

  5. H.P. Feng, L. Tang, G.M. Zeng, J. Tang, Y.C. Deng, M. Yan, Y.N. Liu, Y.Y. Zhou, X.Y. Ren, S. Chen, Carbon-based core-shell nanostructured materials for electrochemical energy storage. J. Mater. Chem. A. 6(17), 7310 (2018)

    CAS  Google Scholar 

  6. H. Gleiter, Nanostructured materials: state of the art and perspectives. Nanostr. Mater. 6(1), 3 (1995)

    CAS  Google Scholar 

  7. J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050 (2018)

    CAS  Google Scholar 

  8. Y. Xie, D. Kocaefe, C. Chen, Y. Kocaefe, Review of research on template methods in preparation of nanomaterials. J. Nanomater. 2016, 2302595 (2016)

    Google Scholar 

  9. D.G. Yu, M. Wang, X. Li, X. Liu, L.M. Zhu, S.W.A. Bligh, Multifluid electrospinning for the generation of complex nanostructures. Wires Nanomed. Nanobi. 12(3), 1939 (2020)

    Google Scholar 

  10. J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57(4), 724 (2012)

    CAS  Google Scholar 

  11. E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: the future enabled by nanomaterials. Science 366(6468), 969 (2012)

    Google Scholar 

  12. L. Yu, H. Hu, H.B. Wu, X.W. Lou, Energy storage: Complex hollow nanostructures: synthesis and energy-related applications. Adv. Mater. 29(15), 969 (2017)

    Google Scholar 

  13. S. Lijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991)

    Google Scholar 

  14. V.N. Popov, Carbon nanotubes: properties and applications. Mater. Sci. Eng. R Rep. 43(3), 61 (2004)

    Google Scholar 

  15. N. Anzar, R. Hasan, M. Tyagi, N. Yadav, J. Narang, Carbon nanotube: A review on synthesis, properties and plethora of applications in the field of biomedical science. Sens. Int. 1, 100003 (2020)

    Google Scholar 

  16. V.V. Pokropivny, V.V. Skorokhod, Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C. 27(5), 990 (2007)

    CAS  Google Scholar 

  17. Q. Qi, Y. Wang, W. Wang, D. Yu, Surface self-assembled multilayer MWCNTs-COOH/BN-PDA/CF for flexible and efficient solar steam generator. J. Clean. Prod. 279, 123626 (2021)

    CAS  Google Scholar 

  18. M. Krishnaveni, A.M. Asiri, S. Anandan, Ultrasound-assisted synthesis of unzipped multiwalled carbon nanotubes/titanium dioxide nanocomposite as a promising next-generation energy storage material. Ultrason. Sonochem. 66, 105105 (2020)

    CAS  Google Scholar 

  19. J. Wang, H. Xu, Y. Hou, Y. Wang, M. Dong, Progress of electrospray and electrospinning in energy applications. Nanotechnology 31, 132001 (2020)

    CAS  Google Scholar 

  20. B. Pant, M. Park, S.J. Park, Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review. Pharmaceutics. 11(7), 305 (2019)

    CAS  Google Scholar 

  21. D. Han, A.J. Steckl, Coaxial Electrospinning formation of complex polymer fibers and their applications. ChemPlusChem 84(10), 1453 (2019)

    CAS  Google Scholar 

  22. S. Peng, P.R. Llango, Electrospinning of Nanofibers for Battery Applications (Springer, China, 2020)

    Google Scholar 

  23. T. Du, H. Zhu, B.B. Xu, C. Liang, M. Yan, Y. Jiang, A universal strategy to fabricate metalsulfides@carbon fibers as freestanding and flexible anodes for high-performance lithium/sodium storage. ACS Appl. Energy Mater. 2(6), 4421 (2019)

    CAS  Google Scholar 

  24. M. Li, Y. Zheng, B. Xin, Y. Xu, Coaxial electrospinning: jet motion, core-shell fiber morphology, and structure as a function of material parameters. Ind. Eng. Chem. Res. 59(13), 6301 (2020)

    CAS  Google Scholar 

  25. A.G. Alsultan, N.A. Mijan, Y.H. Taufiq-Yap, Nanomaterials: an overview of nanorods synthesis and optimization. IntechOpen. 1, 11 (2019)

    Google Scholar 

  26. H.G. Choi, Y.H. Jung, D.K. Kim, Solvothermal synthesis of tungsten oxide nanorods/nanowire/nanosheet. Ceram. Soc. 88(6), 1684 (2005)

    CAS  Google Scholar 

  27. Y. Lin, F. Zhou, M. Chen, S. Zhang, C. Deng, Building defect-rich oxide nanowires@graphene coaxial scrolls to boost high-rate capability, cycling durability and energy density for flexible Zn-ion batteries. Chem. Eng. J. 396, 125259 (2020)

    CAS  Google Scholar 

  28. S.O. Nawaf, Fe2O3-GaSb synthesis as coaxial nanowires for optical applications. J. Univ. Anbar Pure Sci. 13(2), 32 (2019)

    Google Scholar 

  29. D. Zhang, H. Zhang, H. Raza, T. Liu, B. Liu, X. Ba, G. Zheng, G. Chen, M. Cao, Customizing coaxial stacking VS2 nanosheets for dual-band microwave absorption with superior performance in the C-and Ku-bands. J. Mater. Chem. C. 8(17), 592 (2020)

    Google Scholar 

  30. X. Guan, L. Zhao, P. Zhang, J. Liu, X. Song, L. Gao, Electrode material of core-shell hybrid MoS2@CNTs with carbon intercalated few-layer MoS2 nanosheets. Mater. Today Energy. 16, 100379 (2020)

    Google Scholar 

  31. R. Hinterding, A. Feldhoff, Two-dimensional oxides: recent progress in nanosheets. Z. Phys. Chem. 233(1), 117 (2019)

    CAS  Google Scholar 

  32. N. Baig, I. Kammakakam, W. Falathabe, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2, 1821 (2021)

    Google Scholar 

  33. R. Kumar, K. Mondal, P.K. Panda, A. Kaushik, R. Abolhassani, R. Ahuja, H. Rubahn, Y.K. Mishra, Core-shell nanostructures: perspectives towards drug delivery applications. J. Mater. Chem. B. 8(39), 8992 (2020)

    CAS  Google Scholar 

  34. S.F. Shaikh, M. Ubaidullah, R.S. Mane, A.M. Al-Enizi, Chapter 4-types, synthesis methods and applications of ferrites. Micro. Nano Technologies. 4, 51 (2020)

    Google Scholar 

  35. M.M. Khan, S.F. Adil, A. Al-Mayouf, Metal oxides as photocatalysts. J. Saudi. Chem. Soc. 19(5), 462 (2015)

    Google Scholar 

  36. D. Han, A.J. Steckl, Selective pH-responsive core-sheath nanofiber membranes for chem/bio/med applications: targeted delivery of functional molecules. ACS Appl. Mater. Interfaces. 9(49), 42653 (2017)

    CAS  Google Scholar 

  37. R. Schmidt, J.P. Gonjal, E. Moran, in Microwave-assisted hydrothermal synthesis of nanoparticles, ed. by B.I. Kharisov, O.V. Kharissova, U. Ortiz-Mendez (CRC Press, EE.UU, 2016), p. 561

  38. P. Basnet, S. Chatterjee, Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—a systematic review. Nano-Struct. Nano-Objects. 22, 100426 (2020)

    CAS  Google Scholar 

  39. R.I. Walton, Perovskite oxides prepared by hydrothermal and solvothermal synthesis: A review of crystallisation, chemistry, and compositions. Chem. A Eur. J. 26(42), 9041 (2020)

    CAS  Google Scholar 

  40. D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, Synthesis, design, and morphology of metal oxide nanostructures. Metal Oxide Nanostr. 2019, 21 (2019)

    Google Scholar 

  41. V. Saxena, I. Shukla, L.M. Pandey, Chapter 8-hydroxyapatite: an inorganic ceramic for biomedical applications. Biomed. Mater. Eng. 2019, 205 (2019)

  42. G. Yang, S.-J. Park, Conventional and microwave hydrothermal synthesis and application of functional materials: a review. Materials. 2(7), 1177 (2019)

    Google Scholar 

  43. D. Zheng, Y. Qiang, S. Xu, W. Li, S. Yu, S. Zhang, Hierarchical MnO2 nanosheets synthesized via electrodeposition-hydrothermal method for supercapacitor electrodes. Appl. Phys. A. 123, 123 (2017)

    Google Scholar 

  44. G. Cao, D. Liu, Template-based synthesis of nanorod, nanowires, and nanotube arrays. Adv. Colloid interface Sci. 136(1–2), 45 (2007)

    Google Scholar 

  45. H. Kim, M.S. Lah, Templated and template-free fabrication strategies for zero-dimensional hollow MOF superstructures. Dalton Trans. 46(19), 6146 (2017)

    CAS  Google Scholar 

  46. G. Hodes, Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition. Phys. Chem. Chem. Phys. 9(18), 2181 (2007)

    CAS  Google Scholar 

  47. F.G. Hone, T. Abza, Short review of factors affecting chemical bath deposition method for metal chalcogenide thin films. Int. J. Thin. Fil. Sci. Tec. 8(2), 43 (2019)

    Google Scholar 

  48. P.P. Hankare, S.D. Delekar, M.R. Asabe, P.A. Chate, V.M. Bhuse, A.S. Khomane, K.M. Garadkar, B.D. Sarwade, Synthesis of cadmium selenide thin films at low-temperature by simple chemical route and their characterization. J. Phys. Chem. Solids. 67, 2506 (2006)

    CAS  Google Scholar 

  49. M.A. Barote, A.A. Yadav, E.U. Masumdar, Effect of deposition parameters on growth and characterization of chemically deposited Cd1-xPbxS thin films. Chalcog. Lett. 8(2), 129 (2011)

    CAS  Google Scholar 

  50. B. Opasanont, J.B. Baxter, Dynamic speciation modeling to guide selection of complexing agents for chemical bath deposition: case Study for ZnS thin films. Cryst. Growth Des. 15(10), 4893 (2015)

    CAS  Google Scholar 

  51. P.K. Nair, M.T.S. Nair, V.M. Garcıa, O.L. Arenas, Y. Pen, A. Castillo, I.T. Ayala, O. Gomezdaza, A. Sanchez, J. Campos, H. Hu, R. Suarez, M.E. Rinco, Semiconductor thin films by chemical bath deposition for solar energy related applications. Sol. Energ. Mater. Sol. C. 52(3–4), 313 (1998)

    CAS  Google Scholar 

  52. I.Y. Kaplin, E.S. Lokteva, E.V. Golubina, V.V. Lunin, Template synthesis of porous ceria-based catalysts for environmental application. Molecules 25(18), 4242 (2020)

    CAS  Google Scholar 

  53. Y.S. Sakhare, A.U. Ubale, Optical properties of FeSe thin films deposited by chemicalbath deposition technique: effect of molar concentration of Fe (NO3)3.9H2O. Optik 3, 452 (2012)

    CAS  Google Scholar 

  54. S.K. Sarkar, S. Kababya, S. Vega, H. Cohen, J.C. Woicik, A.I. Frenkel, G. Hodes, Effects of solution pH and surface chemistry on the postdeposition growth of chemical bath deposited PbSe nanocrystalline films. Chem. Mater. 19(4), 879 (2007)

    CAS  Google Scholar 

  55. T.S. Kumaran, S.P. Banu, Investigation on structural and optical properties of chemically deposited Pbs thin films. Int. J. Recent Sci. Res. 4, 1685 (2013)

    Google Scholar 

  56. A. Javaid, 11-Actived carbon fiber for energy storage. Activ. Carbon Fiber Text. 2017, 281 (2017)

    Google Scholar 

  57. C. Ma, T. Xu, Y. Wang, Advanced carbon nanostructures for future high performance sodium metal anode. Energy Storage Mater. 25, 811 (2020)

    Google Scholar 

  58. H. Wang, D. Yu, C. Kuang, L. Cheng, W. Li, X. Feng, Z. Zhang, X. Zhang, Y. Zhang, Alkali metal anodes for rechargeable batteries. Chem. 5(2), 313 (2019)

    CAS  Google Scholar 

  59. J. Ryu, S. Park, Nanoscale Anodes for Rechargeable Batteries: Fundamentals and Design Principles (Elsevier, USA, 2020)

    Google Scholar 

  60. S.K. Fayegh, M.A. Rosen, A review of energy storage types, applications and recent developments. Energy Storage Mater. 27, 101047 (2020)

    Google Scholar 

  61. X. Gao, B. Wang, Y. Zhang, H. Liu, H. Liu, H. Wu, S. Dou, Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater. 16, 46 (2019)

    Google Scholar 

  62. Y. Shi, F. Li, Y. Zhang, L. He, Q. Ai, W. Luo, Sb2S3@PPy coaxial nanorods: a versatile and robust host material for reversible storage of alkali metal ions. Nanomaterials 9(4), 560 (2019)

    CAS  Google Scholar 

  63. C. Ma, X. Li, C. Deng, Y. Hu, S. Lee, Z.F. Ma, H. Xiong, Coaxial carbon nanotube supported TiO2@MoO2@Carbon core-shell anode for ultrafast and high-capacity sodium ion Storage. ACS Nano 13(1), 671 (2019)

    CAS  Google Scholar 

  64. Q. Tian, F. Chen, Y. Liu, K. Chen, L. Yang, Stabilizing the nanostructure of SnO2 anode by constructing heterogeneous yolk@shell hollow composite. Appl. Surf. Sci. 493, 838 (2019)

    CAS  Google Scholar 

  65. Y. Zhang, Y. Li, Z. Wang, K. Zhao, Lithiation of SiO2 in Li-ion batteries: in situ transmission electron microscopy experiments and theoretical studies. Nano. Lett. 14, 7161 (2014)

    CAS  Google Scholar 

  66. L. Wang, X. Zhu, K. Tu, D. Liu, H. Tang, J. Li, Z. Xie, D. Qu, Synthesis of carbon-SiO2 hybrid layer @ SiO2 @ CNT coaxial nanotube and its application in lithium storage. Electrochim. Acta. 354, 136726 (2020)

    CAS  Google Scholar 

  67. X. Shi, Q. Yao, H. Wu, Y. Zhao, L. Guan, Rational design of multi-walled carbon nanotube@hollow Fe3O4@C coaxial nanotubes as long-cycle-life lithium ion battery anodes. Nanotechnology 30(46), 465402 (2019)

    CAS  Google Scholar 

  68. L. Chen, Y. Huang, Y. Chen, L. Zheng, Y. Zhao, Y. Chen, G. Zhao, J. Li, Y. Lin, Z. Huang, Coaxial MWNTs@MnCo2O4 wrapped in conducting graphene for enhanced lithium-ion storage. J. Mater. Sci. 853, 157354 (2021)

    Google Scholar 

  69. M. Zhang, X. Huang, H. Xin, D. Li, Y. Zhao, L. Shi, Y. Lin, J. Yu, C. Zhu, J. Xu, Coaxial electrospinning synthesis hollow Mo2C@C core-shell nanofibers for high-performance and long-term lithium-ion batteries. App. Surf. Sci. 473, 352 (2019)

    CAS  Google Scholar 

  70. K. Nikolaidou, S. Sarang, S. Ghosh, Nanostructured photovoltaics. Nono. Futures 3, 012002 (2019)

    CAS  Google Scholar 

  71. J. Yan, B.R. Saunders, Third-generation solar cells: a review and comparison of polymer: fullerene, hybrid polymer and perovskite solar cells. RSC Avd. 82, 43286 (2014)

    Google Scholar 

  72. X. Zhang, Y. Hao, C. Shang, X. Chen, W. Li, S. Hu, G. Cui, Coaxial titanium vanadium nitride core-sheath nanofibers with enhanced electrocatalytic activity for triiodide reduction in dye-sensitized solar cells. Electrochim. Acta. 271, 388 (2018)

    CAS  Google Scholar 

  73. D.K. Chaudhary, A. Ghosh, Md.Y. Ali, S. Bhattacharyya, Charge transport between coaxial polymer nanorods and grafted all-inorganic perovskite nanocrystals for hybrid organic solar cells with enhanced photoconversion efficiency. J. Phys. Chem. C. 124(1), 246 (2020)

    CAS  Google Scholar 

  74. Z. Li, X. Liang, G. Li, H. Liu, H. Zhang, J. Guo, J. Chen, K. Shen, X. San, W. Yu, R.E.I. Schropp, Y. Mai, 92%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat. Commun. J. 10, 125 (2019)

    Google Scholar 

  75. S. Sundaram, K. Shanks, H. Upadhyaya, 18-Thin film photovoltaics, in A Comprehensive Guide to Solar Energy Systems. (Academic Press, New York, 2018), p. 361

  76. K.A.-H. Kim, S. Kasouit, E.V. Johson, P.R.I. Cabarrocas, Substrate versus superstrate configuration for stable thin film silicon solar cells. Sol. Energy Mater. Sol. Cells. 199, 124 (2013)

    Google Scholar 

  77. T. Liu, Z. Liu, J. Ren, Q. Zhao, H. He, N. Wang, Z. Song, X. Huang, Operating temperature and temperature gradient effects on the photovoltaic properties of dye sensitized solar cells assembled with thermoelectric-photoelectric coaxial nanofibers. Electrochim. Acta. 219, 177 (2018)

    Google Scholar 

  78. M. Hameed, K. Mahmood, M. Imran, F. Nawaz, M.T. Mehran, Co-axial electrospray: a versatile tool to fabricate hybrid electron transporting materials for high efficiency and stable perovskite photovoltaics. Nanoscale Adv. 1, 1297 (2019)

    CAS  Google Scholar 

  79. P. Qin, T. Wu, Z. Wang, L. Xiao, F. Ye, L. Xiong, X. Chen, H. Li, X. Yu, G. Fang, Grain boundary and interface passivation with core-shell Au@CdS. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.201908408

    Article  Google Scholar 

  80. M. Akhlaq, Z.S. Khan, Synthesis and characterization of electro-spun TiO2 and TiO2-SnO2 composite nano-fibers for application in advance generation solar cells. Mater. Res. Express. 7, 015523 (2020)

    CAS  Google Scholar 

  81. M. Kumari, V.S. Kundu, S. Kumar, N. Chauhan, S. Siwatch, Synthesis, characterization and dye-sensitized solar cell application of Zinc oxide based coaxial core-shell heterostructure. Mater. Res. Express. 6, 085050 (2019)

    CAS  Google Scholar 

  82. P. Mahajan, A. Singh, S. Arya, improved performance of solution processed organic solar cells with an additive layer of sol-gel synthesized ZnO/CuO core/shell nanoparticles. J. Alloys Compd. 814, 152292 (2020)

    CAS  Google Scholar 

  83. O.A. Abdulrazzaq, V. Saini, S. Bourd, E. Dervishi, A.S. Biris, Organic solar cells: A review of materials, limitations, and possibilities for improvement. Particul. Sci. Technol. 31(5), 427 (2013)

    CAS  Google Scholar 

  84. J.N. Freitas, A.S. Goncalves, A.F. Nogueira, A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells. Nanoscale 6, 6371 (2014)

    CAS  Google Scholar 

  85. H. Soonmin, T.J.S. Anand, A review of chalcogenide thin films for solar cell applications. Indian J. Sci. Technol. 8(12), 67499 (2015)

    Google Scholar 

  86. H. Lei, J. Chen, Z. Tan, G. Fang, Review of recent progress in antimony chalcogenide-based solar cells: Materials and devices. Sol. RRL. 3(6), 1900026 (2019)

    Google Scholar 

  87. X. Zhao, R. Tang, L. Zhang, C. Jiang, W. Lian, X. Wang, W. Han, C. Wu, H. Ju, T. Chen, C. Zhu, Efficient coaxial n-i-p heterojunction Sb2S3 solar cells. J. Phys. D Appl. 54(13), 134001 (2021)

    CAS  Google Scholar 

  88. W. Lu, Y. Li, M. Yang, X. Jiang, Y. Zhang, Y. Xing, Construction of hierarchical Mn2O3@MnO2 core-shell nanofibers for enhanced performance supercapacitor electrodes. ACS Appl. Energy Mater. 3, 8190 (2020)

    CAS  Google Scholar 

  89. Y. Mao, J. Xie, H. Li, W. Hu, Hierarchical core-shell Ag@Ni(OH)2@PPy nanowire electrode for ultrahigh energy density asymmetric supercapacitor. Chem. Eng. J. 405, 126984 (2021)

  90. X. Yang, X. Chen, H. Gao, C. Li, L. Wang, Y. Wu, C. Wang, Y. Li, Rational synthesis of Cu7Se4-CuxCo1-xSe2 double-shell hollow nanospheres for high performance supercapacitors. J. Power Sources. 480, 228741 (2020)

    CAS  Google Scholar 

  91. J.C. Li, J. Gong, X. Zhang, L. Lu, F. Liu, Z. Dai, Q. Wang, X. Hong, H. Pang, M. Han, Alternate integration of vertically oriented CuSe@FeOOH and CuSe@MnOOH hybrid nanosheets frameworks for flexible in-plane asymmetric micro-supercapacitors. ACS Appl. Energy Mater. 3, 3692 (2020)

    CAS  Google Scholar 

  92. H. Wang, G. Yan, X. Cao, Y. Liu, Y. Zhong, L. Cui, J. Liu, Hierarchical Cu(OH)2@MnO2 core-shell nanorods array in situ generated on three-dimensional copper foam for high-performance supercapacitors. Colloid Interface Sci. 563, 394 (2020)

    CAS  Google Scholar 

  93. P. Zhang, H. He, NiCo2S4 nanosheet-modified hollow Cu-Co-O nanocomposites as asymmetric supercapacitor advanced electrodes with excellent performance. Appl. Surf. Sci. 497, 143725 (2019)

    CAS  Google Scholar 

  94. X. Cao, Y. Liu, Y. Zhong, L. Cui, A. Zhang, J.M. Razal, W. Yang, J. Liu, Flexible coaxial fiber-shaped asymmetric supercapacitors based on manganese, nickel co-substituted cobalt carbonate hydroxides. Mater. Chem. A. 8, 1837 (2020)

    CAS  Google Scholar 

  95. P. Bandyopadhyay, G. Saeed, N.H. Kim, J.H. Lee, Zinc-nickel-cobalt oxide@NiMoO4 core-shell nanowire/nanosheet arrays for solid state asymmetric supercapacitors. Chem. Eng. J. 384, 123357 (2020)

    CAS  Google Scholar 

  96. Y. Yang, H. Zhu, H. Meng, W. Ma, C. Wang, F. Ma, Z. Hu, Nickel foam-supported starfish-like Ni(OH)2@CoS nanostructure with obvious core–shell heterogeneous interfaces for hybrid supercapacitors application. J. Mater Sci. 56, 3280 (2021)

    CAS  Google Scholar 

  97. L. Wan, D. Chen, J. Liu, Y. Zhang, J. Chen, M. Xie, C. Du, Construction of FeNiP@CoNi-layered double hydroxide hybrid nanosheets on carbon cloth for high energy asymmetric supercapacitors. J. Power Sources. 465, 228293 (2020)

    CAS  Google Scholar 

  98. G. Yang, X. Li, T. Chen, W. Gao, Y. Dai, X. Li, Self-supported PANI@MnO2 coaxial nanowire network sponge as a binder free electrode for supercapacitors. J. Nanosci. Nanotechnol. 20, 4203 (2020)

    CAS  Google Scholar 

  99. P. Yang, J. Xie, L. Wang, X. Chen, F. Wu, Y. Huang, Coaxial cable-like carbon nanotubes-based active fibers for highly capacitive and stable supercapacitor. Adv. Mater. Interfaces. 7, 2000949 (2020)

    CAS  Google Scholar 

  100. Z. Yang, Y. Jia, Y. Niu, Z. Yong, K. Wu, C. Zhang, M. Zhu, Y. Zhang, Q. Li, Wet-spun PVDF nanofiber separator for direct fabrication of coaxial fiber-shaped supercapacitors. Chem. Eng. J. 400, 125835 (2020)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by CONACYT through the Grants CB2015-250632 and CB2016-286160. L.A. Rodríguez-Guadarrama thanks to CINVESTAV-Saltillo for the postgraduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Alonso-Lemus.

Additional information

Ivonne Alonso-Lemus was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Guadarrama, L.A., Alonso-Lemus, I.L. & Escorcia-García, J. Emerging coaxial nanostructures for clean energy generation and storage systems: A minireview. Journal of Materials Research 36, 4084–4101 (2021). https://doi.org/10.1557/s43578-021-00315-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00315-1

Keywords

Navigation