Skip to main content
Log in

Multilayered TiO2/TiO2−x/TiO2 films deposited by reactive sputtering for photocatalytic applications

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Multilayered TiO2/TiO2−x/TiO2 films, deposited by twenty periodical interruptions of O2 flow during reactive sputtering deposition were submitted to photocatalytic tests and characterized. The O2 flow interruptions lasted 10 s, 38 s, 45 s, and 70 s, while the regular flow periods lasted 540 s. The photocatalytic tests were performed using UV irradiation from a mercury lamp and a solution of methylene blue dye. The best photocatalytic response was observed in samples corresponding to 10 s interruptions. The results show that the amount of degraded dye was increased by an average of 1.67 times in the interrupted flow sample as compared to the homogeneous TiO2 film deposited under similar conditions. The results show that this relatively simple deposition procedure can produce significant improvements to the photocatalytic activity of the TiO2-based catalysts.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available in this published article or are available from the corresponding author on reasonable request.

References

  1. P. Usubharatana, D. McMartin, A. Veawab, P. Tontiwachwuthikul, Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Ind. Eng. Chem. Res. 45(8), 2558–2568 (2006). https://doi.org/10.1021/ie0505763

    Article  CAS  Google Scholar 

  2. A. Habibi-Yangjeh, S. Asadzadeh-Khaneghah, S. Feizpoor, A. Rouhi, Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses? J. Colloid Interface Sci. 580, 503–514 (2020). https://doi.org/10.1016/j.jcis.2020.07.047

    Article  CAS  Google Scholar 

  3. A. Fernandes, P. Makoś, Z. Wang, G. Boczkaj, Synergistic effect of TiO2 photocatalytic advanced oxidation processes in the treatment of refinery effluents. Chem. Eng. J. 391, 123488 (2020). https://doi.org/10.1016/j.cej.2019.123488

    Article  CAS  Google Scholar 

  4. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C Photochem. Rev. 13(3), 169–189 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  CAS  Google Scholar 

  5. S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 112(3), 269–278 (2004). https://doi.org/10.1016/j.jhazmat.2004.05.013

    Article  CAS  Google Scholar 

  6. K. Eufinger, D. Poelman, H. Poelman, G.R. De, G.B. Marin, Photocatalytic activity of dc magnetron sputter deposited amorphous TiO 2 thin films. Appl. Surf. Sci. 254, 148–152 (2007). https://doi.org/10.1016/j.apsusc.2007.07.009

    Article  CAS  Google Scholar 

  7. N. Kanai, T. Nuida, K. Ueta, K. Hashimoto, T. Watanabe, H. Ohsaki, Photocatalytic efficiency of TiO2/SnO2 thin film stacks prepared by DC magnetron sputtering. Vaccum 74, 723–727 (2004). https://doi.org/10.1016/j.vacuum.2004.01.056

    Article  CAS  Google Scholar 

  8. A. Di, E. García-lópez, G. Marcì, L. Palmisano, A survey of photocatalytic materials for environmental remediation. J. Hazard. Mater. 211–212, 3–29 (2012). https://doi.org/10.1016/j.jhazmat.2011.11.050

    Article  CAS  Google Scholar 

  9. A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001

    Article  CAS  Google Scholar 

  10. Q. Shen, C. Wu, Z. You, F. Huang, J. Sheng, F. Zhang et al., g-C3N4 nanoparticle@porous g-C3N4 composite photocatalytic materials with significantly enhanced photo-generated carrier separation efficiency. J. Mater. Res. 35(16), 2148–2157 (2020). https://doi.org/10.1557/jmr.2020.182

    Article  CAS  Google Scholar 

  11. X. Qu, X. Zhao, M. Liu, Z. Gao, D. Yang, L. Shi et al., BiOCl/TiO2 composite photocatalysts synthesized by the sol-gel method for enhanced visible-light catalytic activity toward methyl orange. J. Mater. Res. 35(22), 3067–3078 (2020). https://doi.org/10.1557/jmr.2020.229

    Article  CAS  Google Scholar 

  12. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard et al., Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B Environ. 39(1), 75–90 (2002). https://doi.org/10.1016/S0926-3373(02)00078-4

    Article  CAS  Google Scholar 

  13. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. (1995). https://doi.org/10.1021/cr00033a004

    Article  Google Scholar 

  14. S.N. Ahmed, W. Haider, Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology (2018). https://doi.org/10.1088/1361-6528/aac6ea

    Article  Google Scholar 

  15. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo et al., Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114(19), 9919–9986 (2014). https://doi.org/10.1021/cr5001892

    Article  CAS  Google Scholar 

  16. V. Kumaravel, S. Mathew, J. Bartlett, S.C. Pillai, Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Appl. Catal. B Environ. 2019(244), 1021–1064 (2018). https://doi.org/10.1016/j.apcatb.2018.11.080

    Article  CAS  Google Scholar 

  17. S. Banerjee, D.D. Dionysiou, S.C. Pillai, Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B Environ. 176–177, 396–428 (2015). https://doi.org/10.1016/j.apcatb.2015.03.058

    Article  CAS  Google Scholar 

  18. A.J. Haider, Z.N. Jameel, I.H.M. Al-Hussaini, Review on: Titanium dioxide applications. Energy Procedia 157, 17–29 (2019). https://doi.org/10.1016/j.egypro.2018.11.159

    Article  CAS  Google Scholar 

  19. A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995). https://doi.org/10.1021/cr00035a013

    Article  CAS  Google Scholar 

  20. M. Yamagishi, S. Kuriki, P.K. Song, Y. Shigesato, Thin film TiO2 photocatalyst deposited by reactive magnetron sputtering. Thin Solid Films 442, 227–231 (2003). https://doi.org/10.1016/S0040-6090(03)00987-8

    Article  CAS  Google Scholar 

  21. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 2 (1972). https://doi.org/10.1038/238037a0

    Article  Google Scholar 

  22. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 354, 56–58 (1991). https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  23. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90(14), 2011–2075 (2006). https://doi.org/10.1016/j.solmat.2006.04.007

    Article  CAS  Google Scholar 

  24. O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32(1–2), 33–177 (2004). https://doi.org/10.1016/j.progsolidstchem.2004.08.001

    Article  CAS  Google Scholar 

  25. A. Mills, C. O’Rourke, K. Moore, Powder semiconductor photocatalysis in aqueous solution: an overview of kinetics-based reaction mechanisms. J. Photochem. Photobiol. A Chem. 310, 66–105 (2015). https://doi.org/10.1016/j.jphotochem.2015.04.011

    Article  CAS  Google Scholar 

  26. I.S. Brandt, D.G. Stroppa, P.N. Lisboa-Filho, J.H.D. Da Silva, A.A. Pasa, Favoring the reactivity of TiO2 films with ideal arrangement of anatase and rutile crystallites. ACS Appl. Energy Mater. 2(4), 2579–2584 (2019). https://doi.org/10.1021/acsaem.8b02171

    Article  CAS  Google Scholar 

  27. I.M. Arabatzis, S. Antonaraki, T. Stergiopoulos, A. Hiskia, Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3,5-dichlorophenol degradation. J. Photochem. Photobiol. A Chem. 149, 237–245 (2002). https://doi.org/10.1016/S1010-6030(01)00645-1

    Article  CAS  Google Scholar 

  28. P. Kajitvichyanukul, J. Ananpattarachai, S. Pongpom, Sol–gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process. Sci. Technol. Adv. Mater. 6(3–4 Spec. Iss.), 352–358 (2005). https://doi.org/10.1016/j.stam.2005.02.014

    Article  CAS  Google Scholar 

  29. D. Byun, Y. Jin, B. Kim, J. Kee Lee, D. Park, Photocatalytic TiO2 deposition by chemical vapor deposition. J. Hazard. Mater. 73(2), 199–206 (2000). https://doi.org/10.1016/S0304-3894(99)00179-X

    Article  CAS  Google Scholar 

  30. M.C. Yang, T.S. Yang, M.S. Wong, Nitrogen-doped titanium oxide films as visible light photocatalyst by vapor deposition. Thin Solid Films 469–470(Spec Issue), 1–5 (2004). https://doi.org/10.1016/j.tsf.2004.06.189

    Article  CAS  Google Scholar 

  31. S. Yamamoto, T. Sumita, M.A. Sugiharuto, H. Naramoto, Preparation of epitaxial TiO2 films by pulsed laser deposition technique. Thin Solid Films 401(1–2), 88–93 (2001). https://doi.org/10.1016/S0040-6090(01)01636-4

    Article  CAS  Google Scholar 

  32. F. Meng, X. Song, Z. Sun, Photocatalytic activity of TiO2 thin films deposited by RF magnetron sputtering. Vaccum 83(9), 1147–1151 (2009). https://doi.org/10.1016/j.vacuum.2009.02.009

    Article  CAS  Google Scholar 

  33. S.J.A. Moniz, S.A. Shevlin, X. An, Z.X. Guo, J. Tang, Fe2O3-TiO2 nanocomposites for enhanced charge separation and photocatalytic activity. Chemistry Eur. J. 20(47), 15571–15579 (2014). https://doi.org/10.1002/chem.201403489

    Article  CAS  Google Scholar 

  34. S. Cong, Y. Xu, Explaining the high photocatalytic activity of a mixed phase TiO2: a combined effect of O2 and crystallinity. J. Phys. Chem. C 115(43), 21161–21168 (2011). https://doi.org/10.1021/jp2055206

    Article  CAS  Google Scholar 

  35. Y. Sakatani, H. Ando, K. Okusako, H. Koike, J. Nunoshige, T. Takata et al., Metal ion and N co-doped TiO2 as a visible-light photocatalyst. J. Mater. Res. 19(7), 2100–2108 (2004). https://doi.org/10.1557/JMR.2004.0269

    Article  CAS  Google Scholar 

  36. Y.N. Tan, C.L. Wong, A.R. Mohamed, An overview on the photocatalytic activity of nano-doped-TiO2 in the degradation of organic pollutants. ISRN Mater. Sci. 2011, 1–18 (2011). https://doi.org/10.5402/2011/261219

    Article  CAS  Google Scholar 

  37. T. Giordani, J. Dose, Y. Kuskoski et al., Photocatalytic degradation of propranolol hydrochloride using Nd–TiO2 nanoparticles under UV and visible light. J. Mater. Res. (2021). https://doi.org/10.1557/s43578-021-00207-4

    Article  Google Scholar 

  38. C. Lin, Y. Gao, J. Zhang, D. Xue, H. Fang, J. Tian et al., Go/TiO2 composites as a highly active photocatalyst for the degradation of methyl orange. J. Mater. Res. 35(10), 1307–1315 (2020). https://doi.org/10.1557/jmr.2020.41

    Article  CAS  Google Scholar 

  39. B.S. Gonçalves, L.M.C. Silva, T.C.C. de Souza, V.G. de Castro, G.G. Silva, B.C. Silva et al., Solvent effect on the structure and photocatalytic behavior of TiO2-RGO nanocomposites. J. Mater. Res. 34, 3918–3930 (2019). https://doi.org/10.1557/jmr.2019.342

    Article  CAS  Google Scholar 

  40. R. Pandiyan, N. Delegan, A. Dirany, P. Drogui, M.A. El Khakani, Probing the electronic surface properties and bandgap narrowing of in situ N, W, and (W, N) doped magnetron-sputtered TiO2 films intended for electro-photocatalytic applications. J. Phys. Chem. C 120(1), 631–638 (2016). https://doi.org/10.1021/acs.jpcc.5b08057

    Article  CAS  Google Scholar 

  41. G. Li, K.A. Gray, The solid-solid interface: explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chem. Phys. 339(1–3), 173–187 (2007). https://doi.org/10.1016/j.chemphys.2007.05.023

    Article  CAS  Google Scholar 

  42. T. Cao, Y. Li, C. Wang, C. Shao, Y. Liu, A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 27(6), 2946–2952 (2011). https://doi.org/10.1021/la104195v

    Article  CAS  Google Scholar 

  43. B.M. Everhart, M. Baker-Fales, B. McAuley, E. Banning, H. Almkhelfe, T.C. Back et al., Hydrothermal synthesis of carbon nanotube–titania composites for enhanced photocatalytic performance. J. Mater. Res. 35, 1451–1460 (2020). https://doi.org/10.1557/jmr.2020.97

    Article  CAS  Google Scholar 

  44. A. Godoy, A. Pereira, M. Gomes, M. Fraga, R. Pessoa, D. Leite et al., Black TiO2 thin films production using hollow cathode hydrogen plasma treatment: synthesis, material characteristics and photocatalytic activity. Catalysts (2020). https://doi.org/10.3390/catal10030282

    Article  Google Scholar 

  45. H. Khatibnezhad, F. Ambriz-Vargas, F.B. Ettouil, C. Moreau, An investigation on the photocatalytic activity of sub-stoichiometric TiO2−x coatings produced by suspension plasma spray. J. Eur. Ceram. Soc. 41(1), 544–556 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.08.017

    Article  CAS  Google Scholar 

  46. S. Ramanavicius, A. Tereshchenko, R. Karpicz, V. Ratautaite, U. Bubniene, A. Maneikis et al., TiO2−x/TiO2-structure based ‘self-heated’ sensor for the determination of some reducing gases. Sensors. (2020). https://doi.org/10.3390/s20010074

    Article  Google Scholar 

  47. Q. Zhu, Y. Peng, L. Lin, C.M. Fan, G.Q. Gao, R.X. Wang et al., Stable blue TiO2−x nanoparticles for efficient visible light photocatalysts. J. Mater. Chem. A. 2(12), 4429–4437 (2014). https://doi.org/10.1039/c3ta14484d

    Article  CAS  Google Scholar 

  48. Z. Pei, L. Ding, H. Lin, S. Weng, Z. Zheng, Y. Hou et al., Facile synthesis of defect-mediated TiO2−x with enhanced visible light photocatalytic activity. J. Mater. Chem. A 1(35), 10099–10102 (2013). https://doi.org/10.1039/c3ta12062g

    Article  CAS  Google Scholar 

  49. M. Tian, C. Liu, J. Ge, D. Geohegan, G. Duscher, G. Eres, Recent progress in characterization of the core–shell structure of black titania. J. Mater. Res. 34, 1138–1153 (2019). https://doi.org/10.1557/jmr.2019.46

    Article  CAS  Google Scholar 

  50. M. Matsuda, Y. Shuto, Y. Himeno, K. Shida, M. Matsuda, Black Ti–Zr-based oxygen defective oxide film with visible light absorption prepared via atmospheric oxidation. J. Mater. Res. 36, 368–375 (2021). https://doi.org/10.1557/s43578-020-00009-0

    Article  Google Scholar 

  51. S.A. Abdullah, M.Z. Sahdan, N. Nafarizal, H. Saim, Z. Embong, C.H. Cik Rohaida et al., Influence of substrate annealing on inducing Ti3+ and oxygen vacancy in TiO2 thin films deposited via RF magnetron sputtering. Appl. Surf. Sci. 462(August), 575–582 (2018). https://doi.org/10.1016/j.apsusc.2018.08.137

    Article  CAS  Google Scholar 

  52. J.G. Han, Recent progress in thin film processing by magnetron sputtering with plasma diagnostics. J. Phys. D Appl. Phys. (2009). https://doi.org/10.1088/0022-3727/42/4/043001

    Article  Google Scholar 

  53. A.L.J. Pereira, P.N. Lisboa Filho, J. Acua, I.S. Brandt, A.A. Pasa, A.R. Zanatta et al., Enhancement of optical absorption by modulation of the oxygen flow of TiO2 films deposited by reactive sputtering. J. Appl. Phys. (2012). https://doi.org/10.1063/1.4724334

    Article  Google Scholar 

  54. A. Peter, A. Mihaly-Cozmuta, C. Nicula, L. Mihaly-Cozmuta, A. Jastrzębska, A. Olszyna et al., UV light-assisted degradation of Methyl Orange, Methylene Blue, Phenol, Salicylic Acid, and Rhodamine B: photolysis versus photocatalyis. Water Air Soil Pollut. (2017). https://doi.org/10.1007/s11270-016-3226-z

    Article  Google Scholar 

  55. T. Soltani, M.H. Entezari, Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation. J. Mol. Catal. A Chem. 377(3), 197–203 (2013). https://doi.org/10.1016/j.molcata.2013.05.004

    Article  CAS  Google Scholar 

  56. D. Wen, W. Li, J. Lv, Z. Qiang, M. Li, Methylene blue degradation by the VUV/UV/persulfate process: effect of pH on the roles of photolysis and oxidation. J. Hazard. Mater. 391, 121855 (2020). https://doi.org/10.1016/j.jhazmat.2019.121855

    Article  CAS  Google Scholar 

  57. R.J. Tayade, T.S. Natarajan, H.C. Bajaj, Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes. Ind. Eng. Chem. Res. 48(23), 10262–10267 (2009). https://doi.org/10.1021/ie9012437

    Article  CAS  Google Scholar 

  58. J.D. Klein, A. Yen, S.F. Cogan, Determining thin film properties by fitting optical transmittance. J. Appl. Phys. 68(4), 1825–1830 (1990). https://doi.org/10.1063/1.346617

    Article  CAS  Google Scholar 

  59. J.I. Cisneros, Optical characterization of dielectric and semiconductor thin films by use of transmission data. Appl. Opt. 37, 5262–5270 (1998). https://doi.org/10.1364/AO.37.005262

    Article  CAS  Google Scholar 

  60. H.L. Ma, J.Y. Yang, Y. Dai, Y.B. Zhang, B. Lu, G.H. Ma, Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser. Appl. Surf. Sci. 253(18), 7497–7500 (2007). https://doi.org/10.1016/j.apsusc.2007.03.047

    Article  CAS  Google Scholar 

  61. S. Sahoo, A.K. Arora, V. Sridharan, Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals. J. Phys. Chem. C. 113(39), 16927–16933 (2009). https://doi.org/10.1021/jp9046193

    Article  CAS  Google Scholar 

  62. S.K. Mukherjee, D. Mergel, Thickness dependence of the growth of magnetron-sputtered TiO2 films studied by Raman and optical transmittance spectroscopy. J. Appl. Phys. (2013). https://doi.org/10.1063/1.4811682

    Article  Google Scholar 

  63. D. Bersani, P.P. Lottici, X.Z. Ding, Phonon confinement effects in the Raman scattering by TiO2 nanocrystals. Appl. Phys. Lett. 72(1), 73–75 (1998). https://doi.org/10.1063/1.120648

    Article  CAS  Google Scholar 

  64. A. Li Bassi, D. Cattaneo, V. Russo, C.E. Bottani, E. Barborini, T. Mazza et al., Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry. J. Appl. Phys. (2005). https://doi.org/10.1063/1.2061894

    Article  Google Scholar 

  65. J.C. Parker, R.W. Siegel, Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2. Appl. Phys. Lett. 57(9), 943–945 (1990). https://doi.org/10.1063/1.104274

    Article  CAS  Google Scholar 

  66. I.A. Alhomoudi, G. Newaz, Residual stresses and Raman shift relation in anatase TiO2 thin film. Thin Solid Films 517(15), 4372–4378 (2009). https://doi.org/10.1016/j.tsf.2009.02.141

    Article  CAS  Google Scholar 

  67. C.R. Aita, Raman scattering by thin film nanomosaic rutile TiO2. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2742914

    Article  Google Scholar 

  68. W. Hu, L. Li, G. Li, C. Tang, L. Sun, High-quality brookite TiO2 flowers: synthesis, characterization, and dieletric performance. Cryst. Grown Des. (2009). https://doi.org/10.1021/cg9004032

    Article  Google Scholar 

  69. G. Li, L. Chen, M.E. Graham, K.A. Gray, A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: the importance of the solid-solid interface. J. Mol. Catal. A Chem. 275(1–2), 30–35 (2007). https://doi.org/10.1016/j.molcata.2007.05.017

    Article  CAS  Google Scholar 

  70. D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem B. 107(19), 4545–4549 (2003). https://doi.org/10.1021/jp0273934

    Article  CAS  Google Scholar 

  71. M. Boehme, W. Ensinger, Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene-blue. Nano-Micro Lett. 3(4), 236–241 (2011). https://doi.org/10.3786/nml.v3i4.p236-241

    Article  CAS  Google Scholar 

  72. M. Yan, F. Chen, J. Zhang, M. Anpo, Preparation of controllable crystalline titania and study on the photocatalytic properties. J. Phys. Chem. B 109(18), 8673–8678 (2005). https://doi.org/10.1021/jp046087i

    Article  CAS  Google Scholar 

  73. C. Wu, Y. Yue, X. Deng, W. Hua, Z. Gao, Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations. Catal. Today 93–95, 863–869 (2004). https://doi.org/10.1016/j.cattod.2004.06.087

    Article  CAS  Google Scholar 

  74. R.R. Bacsa, J. Kiwi, Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Appl. Catal. B Environ. 16(1), 19–29 (1998). https://doi.org/10.1016/S0926-3373(97)00058-1

    Article  CAS  Google Scholar 

  75. A.R. Zanatta, A fast-reliable methodology to estimate the concentration of rutile or anatase phases of TiO2. AIP Adv. (2017). https://doi.org/10.1063/1.4992130

    Article  Google Scholar 

  76. J. Wang, P. Zhang, X. Li, J. Zhu, H. Li, Synchronical pollutant degradation and H2 production on a Ti3+-doped TiO2 visible photocatalyst with dominant (001) facets. Appl. Catal. B Environ. 134–135, 198–204 (2013). https://doi.org/10.1016/j.apcatb.2013.01.006

    Article  CAS  Google Scholar 

  77. L.R. Grabstanowicz, S. Gao, T. Li, R.M. Rickard, T. Rajh, D. Liu et al., Facile oxidative conversion of TiH2 to high-concentration Ti3-self-doped rutile TiO2 with visible-light photoactivity. Inorg. Chem. (2013). https://doi.org/10.1021/ic3026182

    Article  Google Scholar 

  78. L. Hou, Z. Guan, T. Liu, C. He, Q. Li, J. Yang, Synergistic effect of 101 crystal facet and bulk/surface oxygen vacancy ratio on the photocatalytic hydrogen production of TiO2. Int. J. Hydrogen Energy 44(16), 8109–8120 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.075

    Article  CAS  Google Scholar 

  79. K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, R. Waser, TiO2—a prototypical memristive material. Nanotechnology (2011). https://doi.org/10.1088/0957-4484/22/25/254001

    Article  Google Scholar 

  80. X. Liu, Z. Xing, H. Zhang, W. Wang, Y. Zhang, Z. Li et al., Fabrication of 3D mesoporous black TiO2/MOS2/TiO2 nanosheets for visible-light-driven photocatalysis. Chemsuschem 9(10), 1118–1124 (2016). https://doi.org/10.1002/cssc.201600170

    Article  CAS  Google Scholar 

  81. F. Teng, M. Li, C. Gao, G. Zhang, P. Zhang, Y. Wang et al., Preparation of black TiO2 by hydrogen plasma assisted chemical vapor deposition and its photocatalytic activity. Appl. Catal. B Environ. 148–149, 339–343 (2014). https://doi.org/10.1016/j.apcatb.2013.11.015

    Article  CAS  Google Scholar 

  82. M. Plodinec, I. Grčić, M.G. Willinger, A. Hammud, X. Huang, I. Panžić et al., Black TiO2 nanotube arrays decorated with Ag nanoparticles for enhanced visible-light photocatalytic oxidation of salicylic acid. J. Alloys Compd. 776, 883–896 (2019). https://doi.org/10.1016/j.jallcom.2018.10.248

    Article  CAS  Google Scholar 

  83. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 31(2), 145–157 (2001). https://doi.org/10.1016/S0926-3373(00)00276-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Laboratório de Plasmas e Processos – LPP, of the Instituto Tecnológico de Aeronáutica – ITA, for the Raman spectroscopy measures, the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, grant 307199/2018-5, and the Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP, Grant 2017/18916-2, for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

LCE: Conceptualization, investigation, validation, formal analysis, writing—original draft. visualization. ALJP: Formal analysis, investigation, conceptualization. LJA: Investigation, conceptualization. JHDS: Formal analysis, methodology, conceptualization, supervision, resources, writing—review, funding acquisition.

Corresponding author

Correspondence to Lucas Caniati Escaliante.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escaliante, L.C., Pereira, A.L.J., Affonço, L.J. et al. Multilayered TiO2/TiO2−x/TiO2 films deposited by reactive sputtering for photocatalytic applications. Journal of Materials Research 36, 3096–3108 (2021). https://doi.org/10.1557/s43578-021-00310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00310-6

Keywords

Navigation