Skip to main content
Log in

New frontiers in supramolecular design of materials

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The powerful functions of materials in the living world utilize supramolecular systems in which molecules self-assemble through noncovalent connections programmed by their structures. This process is of course also programmed by the nature of the chemical environment in which the structures form introducing the potential to autonomously use external energy inputs partly derived from fuel molecules. Our laboratory has focused over the past three decades on integrating this notion of bioinspired supramolecular engineering into the design of novel materials. We present here three projects on functional supramolecular materials that address important societal needs for our future. The first is inspired by the photosynthetic machinery of green plants, creating materials that harvest light to produce fuels for sustainable energy systems. The second example is that of life-like robotic materials that imitate living creatures and effectively transduce different types of energy into mechanical actuation and locomotion of objects for future technologies. The third topic is supramolecular biomaterials that mimic extracellular matrices and provide unprecedented bioactivity to regenerate tissues to achieve longer “healthspans” for humans. In this example, we discuss a recent breakthrough in the structural design of supramolecular motion, which surprisingly led to biomaterials with the potential to reverse paralysis by repairing the brain and the spinal cord.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

© 1997, 2008 AAAS and 2012, 2020 Nature Publishing Group.

Figure 2

© 2014 Nature Publishing Group and © 2016 American Chemical Society.

Figure 3

© 2021 American Chemical Society.

Figure 4

© 2023 Cell Press. The micrograph of the curled nanoribbons is reprinted from Reference 24. © 2020 American Chemical Society.

Figure 5

© 2022 American Chemical Society.

Figure 6

© 2020 Nature Publishing Group.

Figure 7

© 2023 Cell Press and 2021 American Chemical Society.

Figure 8

© 2014 Nature Publishing Group and 2018 AAAS.

Figure 9

© 2023 AAAS.

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. S.I. Stupp, V. LeBonheur, K. Walker, L.S. Li, K.E. Huggins, M. Keser, A. Amstutz, Science 276, 384 (1997)

    Article  CAS  PubMed  Google Scholar 

  2. M. Sayar, S.I. Stupp, Macromolecules 34, 7135 (2001)

    Article  ADS  CAS  Google Scholar 

  3. M.U. Pralle, K. Urayama, G.N. Tew, D. Neher, G. Wegner, S.I. Stupp, Angew. Chem. Int. Ed. 39, 1486 (2000)

    Article  CAS  Google Scholar 

  4. R.M. Capito, H.S. Azevedo, Y.S. Velichko, A. Mata, S.I. Stupp, Science 319, 1812 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. R.H. Zha, S. Sur, S.I. Stupp, Adv. Healthc. Mater. 2, 126 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. D. Carvajal, R. Bitton, J.R. Mantei, Y.S. Velichko, S.I. Stupp, K.R. Shull, Soft Matter 6, 1816 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Y.S. Velichko, J.R. Mantei, R. Bitton, D. Carvajal, K.R. Shull, S.I. Stupp, Adv. Funct. Mater. 22, 369 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. H. Okamoto, T. Mitani, Y. Tokura, S. Koshihara, T. Komatsu, Y. Iwasa, T. Koda, G. Saito, Phys. Rev. B 43, 8224 (1991)

    Article  ADS  CAS  Google Scholar 

  9. A.S. Tayi, A.K. Shveyd, A.C.H. Sue, J.M. Szarko, B.S. Rolczynski, D. Cao, T.J. Kennedy, A.A. Sarjeant, C.L. Stern, W.F. Paxton, W. Wu, S.K. Dey, A.C. Fahrenbach, J.R. Guest, H. Mohseni, L.X. Chen, K.L. Wang, J.F. Stoddart, S.I. Stupp, Nature 488, 485 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. A.K. Blackburn, A.C.H. Sue, A.K. Shveyd, D. Cao, A. Tayi, A. Narayanan, B.S. Rolczynski, J.M. Szarko, O.A. Bozdemir, R. Wakabayashi, J.A. Lehrman, B. Kahr, L.X. Chen, M.S. Nassar, S.I. Stupp, J.F. Stoddart, J. Am. Chem. Soc. 136, 17224 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. A. Narayanan, D. Cao, L. Frazer, A.S. Tayi, A.K. Blackburn, A.C.H. Sue, J.B. Ketterson, J.F. Stoddart, S.I. Stupp, J. Am. Chem. Soc. 139, 9186 (2017)

    Article  CAS  PubMed  Google Scholar 

  12. P.K. Nayak, S. Mahesh, H.J. Snaith, D. Cahen, Nat. Rev. Mater. 4, 269 (2019)

    Article  ADS  CAS  Google Scholar 

  13. J.V. Passarelli, D.J. Fairfield, N.A. Sather, M.P. Hendricks, H. Sai, C.L. Stern, S.I. Stupp, J. Am. Chem. Soc. 140, 7313 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. J.V. Passarelli, C.M. Mauck, S.W. Winslow, C.F. Perkinson, J.C. Bard, H. Sai, K.W. Williams, A. Narayanan, D.J. Fairfield, M.P. Hendricks, W.A. Tisdale, S.I. Stupp, Nat. Chem. 12, 672 (2020)

    Article  CAS  PubMed  Google Scholar 

  15. A.S. Weingarten, R.V. Kazantsev, L.C. Palmer, M. McClendon, A.R. Koltonow, A.P.S. Samuel, D.J. Kiebala, M.R. Wasielewski, S.I. Stupp, Nat. Chem. 6(11), 964 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. B. Harutyunyan, A. Dannenhoffer, S. Kewalramani, T. Aytun, D.J. Fairfield, S.I. Stupp, M.J. Bedzyk, J. Phys. Chem. C 121, 1047 (2017)

    Article  CAS  Google Scholar 

  17. N.J. Hestand, R.V. Kazantsev, A.S. Weingarten, L.C. Palmer, S.I. Stupp, F.C. Spano, J. Am. Chem. Soc. 138(16), 11762 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. F.B. Tantakitti, X. Wang, R.V. Kazantsev, T. Yu, J. Li, E. Zhuang, R. Zandi, J.H. Ortony, C.J. Newcomb, L.C. Palmer, G.S. Shekhawat, M. Olvera de la Cruz, G.C. Schatz, S.I. Stupp, Nat. Mater. 15, 469 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. A.J. Dannenhoffer, H. Sai, B. Harutyunyan, A. Narayanan, N.E. Powers-Riggs, A.N. Edelbrock, J.V. Passarelli, S.J. Weigand, M.R. Wasielewski, M.J. Bedzyk, L.C. Palmer, S.I. Stupp, Nano Lett. 21, 3745 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. A.S. Weingarten, R.V. Kazantsev, L.C. Palmer, D.J. Fairfield, A.R. Koltonow, S.I. Stupp, J. Am. Chem. Soc. 137, 15241 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A.S. Weingarten, A.J. Dannenhoffer, R.V. Kazantsev, H. Sai, D. Huang, S.I. Stupp, J. Am. Chem. Soc. 140, 4965 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. R.V. Kazantsev, A. Dannenhoffer, T. Aytun, B. Harutyunyan, D.J. Fairfield, M.J. Bedzyk, S.I. Stupp, Chem 4, 1596 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A. Dannenhoffer, H. Sai, E.P. Bruckner, L. Ðorđević, A. Narayanan, Y. Yang, X. Ma, L.C. Palmer, S.I. Stupp, Chem 9, 170 (2023)

    Article  CAS  Google Scholar 

  24. H. Sai, G.C. Lau, A.J. Dannenhoffer, S.M. Chin, L. Ðorđević, S.I. Stupp, Nano Lett. 20, 4234 (2020)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. S.I. Stupp, T.D. Clemons, J.K. Carrow, H. Sai, L.C. Palmer, Isr. J. Chem. 60, 124 (2020)

    Article  CAS  Google Scholar 

  26. E.P. Bruckner, T. Curk, L. Ðorđević, Z.W. Wang, Y. Yang, R.M. Qiu, A.J. Dannehoffer, H. Sai, J. Kupferberg, L.C. Palmer, E. Lujiten, S.I. Stupp, ACS Nano 16, 8993 (2022)

    Article  CAS  PubMed  Google Scholar 

  27. C. Li, A. Iscen, L.C. Palmer, G.C. Schatz, S.I. Stupp, J. Am. Chem. Soc. 142, 8447 (2020)

    Article  CAS  PubMed  Google Scholar 

  28. J.D. Hartgerink, E. Beniash, S.I. Stupp, Science 294, 1684 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Z. Álvarez, A.N. Kolberg-Edelbrock, I.R. Sasselli, J.A. Ortega, R. Qiu, Z. Syrgiannis, P.A. Mirau, F. Chen, S.M. Chin, S. Weigand, E. Kiskinis, S.I. Stupp, Science 374, 848 (2021)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. V.M. Tysseling-Mattiace, V. Sahni, K.L. Niece, D. Birch, C. Czeisler, M.G. Fehlings, S.I. Stupp, J.A. Kessler, J. Neurosci. 28, 3814 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. R.N. Shah, N.A. Shah, M.M. Del Rosario Lim, C. Hsieh, G. Nuber, S.I. Stupp, Proc. Natl. Acad. Sci. U.S.A. 107, 3293 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. S.S. Lee, E.L. Hsu, M. Mendoza, J. Ghodasra, M.S. Nickoli, A. Ashtekar, M. Polavarapu, J. Babu, R.M. Riaz, J.D. Nicolas, D. Nelson, S.Z. Hashmi, S.R. Kaltz, J.S. Earhart, B.R. Merk, J.S. McKee, S.F. Bairstow, R.N. Shah, W.K. Hsu, S.I. Stupp, Adv. Healthc. Mater. 4, 131 (2015)

    Article  CAS  PubMed  Google Scholar 

  33. M.J. Webber, J. Tongers, C.J. Newcomb, K.-T. Marquardt, J. Bauersachs, D.W. Losordo, S.I. Stupp, Proc. Natl. Acad. Sci. U.S.A. 108, 13438 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Z. Álvarez, J.A. Ortega, K. Sato, I.R. Sasselli, A.N. Kolberg-Edelbrock, R. Qiu, K.A. Marshall, T.P. Nguyen, C.S. Smith, K.A. Quinlan, V. Papakis, Z. Syrgiannis, N.A. Sather, C. Musumeci, E. Engel, S.I. Stupp, E. Kiskinis, Cell Stem Cell 30, 219 (2023)

    Article  PubMed  Google Scholar 

  35. M.H. Sangji, H. Sai, S.M. Chin, S.R. Lee, I.R. Sasselli, L.C. Palmer, S.I. Stupp, Nano Lett. 21, 6146 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. J.H. Ortony, C.J. Newcomb, J.B. Matson, L.C. Palmer, P.E. Doan, B.M. Hoffman, S.I. Stupp, Nat. Mater. 13, 812 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. J.H. Ortony, B. Qiao, C.J. Newcomb, T.J. Keller, L.C. Palmer, E. Deiss-Yehiely, M. Olvera de la Cruz, S. Han, S.I. Stupp, J. Am. Chem. Soc. 139, 8915 (2017)

    Article  CAS  PubMed  Google Scholar 

  38. R. Freeman, M. Han, Z. Álvarez, J.A. Lewis, J.R. Wester, N. Stephanopoulos, M.T. McClendon, C. Lynsky, J.M. Godbe, H. Sangji, E. Luijten, S.I. Stupp, Science 362, 6141 (2018)

    Article  Google Scholar 

  39. J.R. Wester, J.A. Lewis, R. Freeman, H. Sai, L.C. Palmer, S.E. Henrich, S.I. Stupp, J. Am. Chem. Soc. 142, 12216 (2020)

    Article  CAS  PubMed  Google Scholar 

  40. A.N. Edelbrock, T.D. Clemons, S.M. Chin, J.J.W. Roan, E.P. Bruckner, Z. Álvarez, J.F. Edelbrock, K.S. Wek, S.I. Stupp, Adv. Sci. 14, 2004042 (2021)

    Article  Google Scholar 

  41. R.Z. Pavlović, S.A. Egner, L.C. Palmer, S.I. Stupp, J. Polym. Sci. 61, 870 (2023)

    Article  Google Scholar 

Download references

Acknowledgments

We thank R. Shah for providing the previously unpublished scanning electron micrograph shown in Figure 1b and M. Seniw for various illustrations reprinted here.

Funding

Experimental work in the Stupp laboratory was supported by the US Department of Energy Office of Basic Energy Sciences under Award No. DE-SC002088 (for characterization of PA molecular dynamics and the structure and alloying of PMI chromophore amphiphile supramolecular polymers); the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0000989 (for photocatalytic and soft robotic materials and for supramolecular bundles); the National Science Foundation under Award No. NSF DMR-1508731 (for the hybrid bonding polymers); and the Center for Regenerative Nanomedicine at the Simpson Querrey Institute for BioNanotechnology (for biological studies).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Samuel I. Stupp.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stupp, S.I., Palmer, L.C. New frontiers in supramolecular design of materials. MRS Bulletin (2024). https://doi.org/10.1557/s43577-024-00669-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43577-024-00669-x

Keywords

Navigation