Skip to main content
Log in

Organic synaptic transistors for flexible and stretchable artificial sensory nerves

  • Review Artlcle
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article reviews artificial nerve electronics (nervetronics), an emerging field in which the goal is to develop bioinspired electronics that implement biological sensory functions. An artificial synapse is a fundamental core technology of artificial sensory nerves that can emulate functional properties of a biological synapse. Use of artificial synapses reduces the energy consumption and increases the sensitivity of low-level perception in artificial sensory nerves. Wearable and implantable devices require artificial sensory nerves that are flexible and stretchable. Therefore, development of organic artificial synapses that have these qualities is a central focus in nervetronics. Here, we review the concept and mechanism of organic artificial synapses for use as basic elements of flexible and stretchable artificial nerves. Next, we outline the research direction of the flexible and stretchable artificial sensory nerves so far, and finally, identify challenges of artificial sensory nerves that must be solved to enable actual application of this developing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

© 2019 Elsevier. (d) Formation of electrical double layer during ([i]) no bias, ([ii]) bias applied, ([iii]) bias removed. (e) Ion penetration to semiconductors during ([i]) no bias, ([ii]) bias applied, ([iii]) bias removed. Draw under assumption of p-type semiconductors.

Figure 3
Figure 4

© 2018 AAAS.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Y. Lee, T.-W. Lee, Organic Synapses for neuromorphic electronics: From brain-inspired computing to sensorimotor nervetronics. Acc. Chem. Res. 52, 964 (2019)

    Article  CAS  Google Scholar 

  2. H.-L. Park, Y. Lee, N. Kim, D.-G. Seo, G.-T. Go, T.-W. Lee, Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv. Mater. 32, 1903558 (2019)

    Article  CAS  Google Scholar 

  3. Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh, D. Son, J. Kang, A.M. Foudeh, C. Zhu, Y. Lee, S. Niu, J. Liu, R. Pfattner, Z. Bao, T.-W. Lee, A bioinspired flexible organic artificial afferent nerve. Science 360, 998 (2018)

    Article  CAS  Google Scholar 

  4. C. Wan, G. Chen, Y. Fu, M. Wang, N. Matsuhisa, S. Pan, L. Pan, H. Yang, Q. Wan, L. Zhu, X. Chen, An artificial sensory neuron with tactile perceptual learning. Adv. Mater. 30, 1801291 (2018)

    Article  CAS  Google Scholar 

  5. K. Xiao, C. Wan, L. Jiang, X. Chen, M. Antonietti, Bioinspired ionic sensory systems: The successor of electronics. Adv. Mater. 32, 2000218 (2020)

    Article  CAS  Google Scholar 

  6. B.C.K. Tee, A. Chortos, A. Berndt, A.K. Nguyen, A. Tom, A. McGuire, Z.C. Lin, K. Tien, W.G. Bae, H. Wang, P. Mei, H.H. Chou, B. Cui, K. Deisseroth, T.N. Ng, Z. Bao, A skin-inspired organic digital mechanoreceptor. Science 350, 313 (2015)

    Article  CAS  Google Scholar 

  7. W. Xu, S.-Y. Min, H. Hwang, T.-W. Lee, Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2, e1501326 (2016)

    Article  CAS  Google Scholar 

  8. W. Xu, H. Cho, Y.-H. Kim, Y.-T. Kim, C. Wolf, C.-G. Park, T.-W. Lee, Organometal halide perovskite artificial synapses. Adv. Mater. 28, 5916 (2016)

    Article  CAS  Google Scholar 

  9. S.-I. Kim, Y. Lee, M.-H. Park, G.-T. Go, Y.-H. Kim, W. Xu, H.-D. Lee, H. Kim, D.-G. Seo, W. Lee. T.-W. Lee, Dimensionality dependent plasticity in halide perovskite artificial synapses for neuromorphic computing. Adv. Electron. Mater. 5, 1900008 (2019)

    Article  CAS  Google Scholar 

  10. D.W. Kim, J.C. Yang, S. Lee, S. Park, Neuromorphic processing of pressure signal using integrated sensor-synaptic device capable of selective and reversible short- and long-term plasticity operation. ACS Appl. Mater. Interfaces 12, 23207 (2020)

    Article  CAS  Google Scholar 

  11. J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao, S. Park, Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, 1904765 (2019)

    Article  CAS  Google Scholar 

  12. H.-L. Park, H. Kim, D. Lim, H. Zhou, Y.-H. Kim, Y. Lee, S. Park, T.-W. Lee, Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv. Mater. 32, 1906899 (2020)

    Article  CAS  Google Scholar 

  13. X. Bu, H. Xu, D. Shang, Y. Li, H. Lv, Q. Liu, Ion‐gated transistor: An enabler for sensing and computing integration. Adv. Intell. Syst. 2, 2000156 (2020)

    Article  Google Scholar 

  14. D.J. Lipomi, Z. Bao, Stretchable and ultraflexible organic electronics. MRS Bull. 42(2), 93 (2017)

    Article  Google Scholar 

  15. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952)

    Article  CAS  Google Scholar 

  16. J.F. Otto, Y. Yang, W.N. Frankel, H.S. White, K.S. Wilcox, A spontaneous mutation involving Kcnq2 (Kv7.2) reduces M-current density and spike frequency adaptation in mouse CA1 neurons. J. Neurosci. 26, 2053 (2006)

    Article  CAS  Google Scholar 

  17. A.E. Pereda, Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250 (2014)

    Article  CAS  Google Scholar 

  18. M. Tsodyks, K. Pawelzik, H. Markram, Neural networks with dynamic synapses. Neural Comput. 10, 821 (1998)

    Article  CAS  Google Scholar 

  19. M. Inagawa, H. Yoshikawa, T. Yokoyama, K. Awaga, Electrochemical structural transformation and reversible doping/dedoping of lithium phthalocyanine thin films. Chem. Commun. 23, 3389 (2009)

    Article  CAS  Google Scholar 

  20. D. Ferster, B. Jagadeesh, EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording. J. Neurosci. 12, 1262 (1992)

    Article  CAS  Google Scholar 

  21. L.F. Abbott, W.G. Regehr, Synaptic computation. Nature 431, 796 (2004)

    Article  CAS  Google Scholar 

  22. H. Markram, J. Lübke, M. Frotscher, B. Sakmann, Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213 (1997)

    Article  CAS  Google Scholar 

  23. G.-T. Go, Y. Lee, D.-G. Seo, M. Pei, W. Lee, H. Yang, T.-W. Lee, Achieving microstructure-controlled synaptic plasticity and long-term retention in ion-gel-gated organic synaptic transistors. Adv. Intell. Syst. 2, 2000012 (2020)

    Article  Google Scholar 

  24. D.-G. Seo, Y. Lee, G.-T. Go, M. Pei, S. Jung, Y.H. Jeong, W. Lee, H.-L. Park, S.-W. Kim, H. Yang, C. Yang, T.-W. Lee, Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: From artificial neural networks to neuro-prosthetics. Nano Energy 65, 104035 (2019)

    Article  CAS  Google Scholar 

  25. Y. Sun, C. Song, J. Yin, X. Chen, Q. Wan, F. Zeng, F. Pan, Guiding the growth of a conductive filament by nanoindentation to improve resistive switching. ACS Appl. Mater. Interfaces 9, 34064 (2017)

    Article  CAS  Google Scholar 

  26. M. Hu, C.E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R.S. Williams, J.J. Yang, Q. Xia, J.P. Strachan, Memristor-based analog computation and neural network classification with a dot product engine. Adv. Mater. 30, 1705914 (2018)

    Article  CAS  Google Scholar 

  27. P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, Fully hardware-implemented memristor convolutional neural network. Nature 577, 641 (2020)

    Article  CAS  Google Scholar 

  28. Y. Li, J. Lu, D. Shang, Q. Liu, S. Wu, Z. Wu, X. Zhang, J. Yang, Z. Wang, H. Lv, M. Liu, Oxide-based electrolyte-gated transistors for spatiotemporal information processing. Adv. Mater. 32(47), 2003018 (2020)

    Article  CAS  Google Scholar 

  29. J. Lee, L.G. Kaake, J.H. Cho, X.-Y. Zhu, T.P. Lodge, C.D. Frisbie, Ion gel-gated polymer thin-film transistors: Operating mechanism and characterization of gate dielectric capacitance, switching speed, and stability. J. Phys. Chem. C 113, 8972 (2009)

    Article  CAS  Google Scholar 

  30. M.J. Panzer, C.D. Frisbie, Exploiting ionic coupling in electronic devices: Electrolyte-Gated organic field-effect transistors. Adv. Mater. 20, 3177 (2008)

    Article  CAS  Google Scholar 

  31. A. Melianas, T.J. Quill, G. LeCroy, Y. Tuchman, H.V. Loo, S.T. Keene, A. Giovannitti, H.R. Lee, I.P. Maria, I. McCulloch, A. Salleo, Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. Sci. Adv. 6, eabb2958 (2020).

  32. Y. Van De Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria, S. Agarwal, M.J. Marinella, A.A. Talin, A. Salleo, A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 14 (2017)

    Google Scholar 

  33. I. You, M. Kong, U. Jeong, Block copolymer elastomers for stretchable electronics. ACC Chem. Res. 52, 63 (2019)

    CAS  Google Scholar 

  34. S.-W. Jung, J-.S. Choi, J.B. Koo, C.W. Park, B.S. Na, J.-Y. Oh, S.S. Lee, H.Y. Chu, Stretchable organic thin-film transistors fabricated on elastomer substrates using polyimide stiff-island structures. ECS Solid State Lett. 4(1), 1 (2015)

    Article  CAS  Google Scholar 

  35. D.-H. Kim, J.-H. Ahn, W.M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, J.A. Rogers, Stretchable and foldable silicon integrated circuits. Science 320, 507 (2008)

    Article  CAS  Google Scholar 

  36. Y. Lee, J.Y. Oh, W. Xu, O. Kim, T.R. Kim, J. Kang, Y. Kim, D. Son, J.B.-H. Tok, M.J. Park, Z. Bao, T.-W. Lee, Stretchable organic optoelectronic sensorimotor synapse. Sci. Adv. 4, 7387 (2018)

    Article  CAS  Google Scholar 

  37. H. Shim, K. Sim, F. Ershad, P. Yang, A. Thukral, Z. Rao, H.-J. Kim, Y. Liu, X. Wang, G. Gu, L. Gao, X. Wang, Y. Chai, C. Yu, Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems. Sci. Adv. 5, 4961 (2019)

    Article  CAS  Google Scholar 

  38. X. Wang, Y. Yan, E. Li, Y. Liu, D. Lai, Z. Lin, Y. Liu, H. Chen, T. Guo, Stretchable synaptic transistors with tunable synaptic behavior. Nano Energy 75, 104952 (2020)

    Article  CAS  Google Scholar 

  39. E. Song, B. Kang, H.H. Choi, D.H. Sin, H. Lee, W.H. Lee, K. Cho, Stretchable and transparent organic semiconducting thin film with conjugated polymer nanowires embedded in an elastomeric matrix. Adv. Electron. Mater. 2, 1500250 (2016)

    Article  CAS  Google Scholar 

  40. D. Choi, H. Kim, N. Persson, P.-H. Chu, M. Chang, J.-H. Kang, S. Graham, E. Reichmanis, Elastomer-polymer semiconductor blends for high-performance stretchable charge transport networks. Chem. Mater. 28, 1196 (2016)

    Article  CAS  Google Scholar 

  41. J. Xu, S. Wang, G.-J.N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V.R. Feig, J.W.F. To, S. Rondeau-Gagné, J. Park, B.C. Schroeder, C. Lu, J.Y. Oh, Y. Wang, Y.-H. Kim, H. Yan, R. Sinclair, D. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J.B.-H. Tok, J.W. Chung, Z. Bao, Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59 (2017)

    Article  CAS  Google Scholar 

  42. J. Mun, G.-J.N. Wang, J.Y. Oh, T. Katsumata, F.L. Lee, J. Kang, H.-C. Wu, F. Lissel, S. Rondeau-Gagné, J.B.-H. Tok, Z. Bao, Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv. Funct. Mater. 28, 1804222 (2018)

    Article  CAS  Google Scholar 

  43. Y. Takeuchi, M. Yamasaki, Y. Nagumo, K. Imoto, M. Watanabe, M. Miyata, Rewiring of afferent fibers in the somatosensory thalamus of mice caused by peripheral sensory nerve transection. J. Neurosci. 32, 6917 (2012)

    Article  CAS  Google Scholar 

  44. F. Bengtsson, R. Brasselet, R.S. Johansson, A. Arleo, H. Jörntell, Integration of sensory quanta in cuneate nucleus neurons in vivo. PLoS ONE 8, e56630 (2013)

    Article  CAS  Google Scholar 

  45. J.A. Pruszynski, R.S. Johansson, Edge-orientation processing in first-order tactile neurons. Nat. Neurosci. 17, 1404 (2014)

    Article  CAS  Google Scholar 

  46. A. Salleo, Charge transport in polymeric transistors. Mater. Today 10, 38 (2007)

    Article  CAS  Google Scholar 

  47. H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, D.M. de Leeuw, Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685 (1999)

    Article  CAS  Google Scholar 

  48. H. Han, Z. Xu, K. Guo, Y. Ni, M. Ma, H. Yu, H. Wei, J. Gong, S. Zhang, W. Xu, Tunable synaptic plasticity in crystallized conjugated polymer nanowire artificial synapses. Adv. Intell. Syst. 2, 1900176 (2020)

    Article  Google Scholar 

  49. S. Thiemann, S. Sachnov, S. Porscha, P. Wasserscheid, J. Zaumseil, Ionic liquids for electrolyte-gating of ZnO field-effect transistors. J. Phys. Chem. C 116, 13536 (2012)

    Article  CAS  Google Scholar 

  50. Y. Cao, T.G. Morrissey, E. Acome, S.I. Allec, B.M. Wong, C. Keplinger, C. Wang, A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 29, 160599 (2017)

    Article  Google Scholar 

  51. L. Shi, T. Zhu, G. Gao, X. Zhang, W. Wei, W. Liu, S. Ding, Highly stretchable and transparent ionic conducting elastomers. Nat. Commun. 9, 2630 (2018)

    Article  CAS  Google Scholar 

  52. K. Sim, Z. Rao, H.-J. Kim, A. Thukral, H. Shim, C. Yu, Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci. Adv. 5, eaav5749 (2019)

    Article  CAS  Google Scholar 

  53. S. Wang, J. Xu, W. Wang, G.-J.N. Wang, R. Rastak, F. Molina-Lopez, J.W. Chung, S. Niu, V.R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A.M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J.B.-H. Tok, Z. Bao, Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83 (2018)

    Article  CAS  Google Scholar 

  54. F. Molina-Lopez, T.Z. Gao, U. Kraft, C. Zhu, T. Öhlund, R. Pfattner, V.R. Feig, Y. Kim, S. Wang, Y. Yun, Z. Bao, Inkjet-printed stretchable and low voltage synaptic transistor array. Nat. Commun. 10, 2676 (2019)

    Article  CAS  Google Scholar 

  55. S.-Y. Min, T.S. Kim, B.J. Kim, H. Cho, Y.Y. Noh, H. Yang, J.H. Cho, T.-W. Lee, Large-scale organic nanowire lithography and electronics. Nat. Commun. 4, 1773 (2013)

    Article  CAS  Google Scholar 

  56. F. Zare Bidoky, B. Tang, R. Ma, K.S. Jochem, W.J. Hyun, D. Song, S.J. Koester, T.P. Lodge, C.D. Frisbie, Sub-3 V ZnO electrolyte-gated transistors and circuits with screen-printed and photo-crosslinked ion gel gate dielectrics: New routes to improved performance. Adv. Funct. Mater. 30, 1902028 (2020)

    Article  CAS  Google Scholar 

  57. S.H. Kim, K. Hong, K.H. Lee, C.D. Frisbie, Performance and stability of aerosol-jet-printed electrolyte-gated transistors based on poly(3-hexylthiophene). ACS Appl. Mater. Interfaces 5, 6580 (2013)

    Article  CAS  Google Scholar 

  58. S. Niu, N. Matsuhisa, L. Beker, J. Li, S. Wang, J. Wang, Y. Jiang, X. Yan, Y. Yun, W. Burnett, A.S.Y. Poon, J.B.-H. Tok, X. Chen, Z. Bao, A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2, 361 (2019)

    Article  Google Scholar 

  59. S. Han, J. Kim, S.M. Won, Y. Ma, D. Kang, Z. Xie, K.-T. Lee, H.U. Chung, A. Banks, S. Min, S.Y. Heo, C.R. Davies, J.W. Lee, C.-H. Lee, B.H. Kim, K. Li, Y. Zhou, C. Wei, X. Feng, Y. Huang, J.A. Rogers, Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci. Transl. Med. 10, eaan4950 (2018)

    Article  Google Scholar 

  60. W.-J. Song, S. Yoo, G. Song, S. Lee, M. Kong, J. Rim, U. Jeong, S. Park, Recent progress in stretchable batteries for wearable electronics. Batter. Supercaps 2, 181 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (Ministry of Science, ICT and Future Planning) (NRF-2016R1A3B1908431). This work was also supported by the Creative-Pioneering Researchers Program through Seoul National University (SNU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Woo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, DG., Go, GT., Park, HL. et al. Organic synaptic transistors for flexible and stretchable artificial sensory nerves. MRS Bulletin 46, 321–329 (2021). https://doi.org/10.1557/s43577-021-00093-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-021-00093-5

Navigation