Skip to main content
Log in

Surface molding of multi-stimuli-responsive microgel actuators

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The fabrication of soft hydrogel actuators that rapidly respond to multiple stimuli in ambient environments is a challenge. This article describes a method—based on surface molding—to generate multi-stimuli-responsive soft actuators consisting of arrays of geometrically patterned hydrogels on elastomeric supports. The stimuli-responsive properties of these actuators were derived from functional fillers that were added directly to the prepolymer or synthesized within the gels using simple reactions. These actuators respond rapidly and can be rationally controlled by a variety of stimuli, including humidity, magnetic fields, or light, depending on the filler type. The reported fabrication strategies will be useful to the design and production of “programmable” soft actuator systems useful to, for example, soft robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Therien-Aubin, Z.L. Wu, Z. Nie, E. Kumacheva, J. Am. Chem. Soc. 135, 4834 (2013)

    Article  CAS  Google Scholar 

  2. S.E. Bakarich, R. Gorkin, M.I.H. Panhuis, G.M. Spinks, Macromol. Rapid Commun. 36, 1211 (2015)

    Article  CAS  Google Scholar 

  3. D. Molinnus, M. Bäcker, H. Iken, A. Poghossian, M. Keusgen, M.J. Schöning, Phys. Status Solidi A 212, 1382 (2015)

    Article  CAS  Google Scholar 

  4. A. Nishiguchi, A. Mourran, H. Zhang, M. Moller, Adv. Sci. 5, 1700038 (2018)

    Article  Google Scholar 

  5. J.C. Breger, C. Yoon, R. Xiao, H.R. Kwag, M.O. Wang, J.P. Fisher, T.D. Nguyen, D.H. Gracias, ACS Appl. Mater. Interfaces 7, 3398 (2015)

    Article  CAS  Google Scholar 

  6. D. Morales, E. Palleau, M.D. Dickey, O.D. Velev, Soft Matter 10, 1337 (2014)

    Article  CAS  Google Scholar 

  7. K.-U. Jeong, J.-H. Jang, D.-Y. Kim, C. Nah, J.H. Lee, M.-H. Lee, H.-J. Sun, C.-L. Wang, S.Z.D. Cheng, E.L. Thomas, J. Mater. Chem. 21, 6824 (2011)

    Article  CAS  Google Scholar 

  8. R.M. Erb, J.S. Sander, R. Grisch, A.R. Studart, Nat. Commun. 4, 1712 (2013)

    Article  Google Scholar 

  9. J.J. Bowen, M.A. Rose, A. Konda, S.A. Morin, Angew. Chem. Int. Ed. 57, 1236 (2018)

    Article  CAS  Google Scholar 

  10. S. Armon, E. Efrati, R. Kupferman, E. Sharon, Science 333, 1726 (2011)

    Article  CAS  Google Scholar 

  11. P. Polygerinos, N. Correll, S.A. Morin, B. Mosadegh, C.D. Onal, K. Petersen, M. Cianchetti, M.T. Tolley, R.F. Shepherd, Adv. Eng. Mater. 19, 1700016 (2017)

    Article  Google Scholar 

  12. A.S. Gladman, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, J.A. Lewis, Nat. Mater. 15, 413 (2016)

    Article  Google Scholar 

  13. Z. Zhao, H. Wang, L. Shang, Y. Yu, F. Fu, Y. Zhao, Z. Gu, Adv. Mater. 29, 1704569 (2017)

    Article  Google Scholar 

  14. Y. Yamamoto, K. Kanao, T. Arie, S. Akita, K. Takei, ACS Appl. Mater. Interfaces 7, 11002 (2015)

    Article  CAS  Google Scholar 

  15. V. Thomas, M.M. Yallapu, B. Sreedhar, S.K. Bajpai, J. Colloid Interface Sci. 315, 389 (2007)

    Article  CAS  Google Scholar 

  16. R. Fuhrer, E.K. Athanassiou, N.A. Luechinger, W.J. Stark, Small 5, 383 (2009)

    Article  CAS  Google Scholar 

  17. C.W. Peak, J.J. Wilker, G. Schmidt, Colloid Polym. Sci. 291, 2031 (2013)

    Article  CAS  Google Scholar 

  18. S.J. Buwalda, K.W. Boere, P.J. Dijkstra, J. Feijen, T. Vermonden, W.E. Hennink, J. Control Rel. 190, 254 (2014)

    Article  CAS  Google Scholar 

  19. M. Heskins, J.E. Guillet, J. Macromol. Sci. A 2, 1441 (1968)

    Article  CAS  Google Scholar 

  20. Z. Mo, C. Zhang, R. Guo, S. Meng, J. Zhang, Ind. Eng. Chem. Res. 50, 3534 (2011)

    Article  CAS  Google Scholar 

  21. A. Priola, A.D. Gianni, R. Bongiovanni, S.G. Starodubtsev, S.S. Abramchuck, S.N. Polyakov, V.V. Volkov, E.V. Schtykova, K.A. Dembo, Eur. Polym. J. 46, 2105 (2010)

    Article  CAS  Google Scholar 

  22. D.J. Yang, Q. Zhang, G. Chen, S.F. Yoon, J. Ahn, S.G. Wang, Q. Zhou, Q. Wang, J.Q. Li, Phys. Rev. B 66, 165440 (2002)

    Article  Google Scholar 

  23. S.R. Shin, H. Bae, J.M. Cha, J.Y. Mun, Y.C. Chen, H. Tekin, H. Shin, S. Farshchi, M.R. Dokmeci, S. Tang, A. Khademhosseini, ACS Nano 6, 362 (2012)

    Article  CAS  Google Scholar 

  24. S.G. Starodubtsev, E.V. Saenko, M.E. Dokukin, V.L. Aksenov, V.V. Klechkovskaya, I.S. Zanaveskina, A.R. Khokhlov, J. Phys. Condens. Mater. 17, 1471 (2005)

    Article  CAS  Google Scholar 

  25. K.S. Oh, J.S. Oh, H.S. Choi, Y.C. Bae, Macromolecules 31, 7328 (1998)

    Article  CAS  Google Scholar 

  26. H. Furukawa, J. Mol. Struct. 554, 11 (2000)

    Article  CAS  Google Scholar 

  27. S. Timoshenko, J. Opt. Soc. Am. 11, 233 (1925)

    Article  CAS  Google Scholar 

  28. M.A. Rose, J.J. Bowen, S.A. Morin, ChemPhysChem 20, 909 (2019)

    Article  CAS  Google Scholar 

  29. K. Perez-Toralla, A. Olivera-Torres, M.A. Rose, A.M. Esfahani, K. Reddy, R.G. Yang, S.A. Morin, Adv. Sci. 7, 2000769 (2020)

    Article  CAS  Google Scholar 

  30. M.L. Green, R.A. Levy, J. Met. 37, 63 (1985)

    CAS  Google Scholar 

  31. D. Qin, Y.N. Xia, J.A. Rogers, R.J. Jackman, X.M. Zhao, G.M. Whitesides, in Microsystem Technology in Chemistry and Life Sciences (Springer, Berlin, Germany, 1998), vol. 194, pp. 1–20

  32. H. Le Ferrand, MRS Bull. 45(12), 986 (2020)

    Article  Google Scholar 

  33. W. Zhu, J.X. Li, Y.J. Leong, I. Rozen, X. Qu, R.F. Dong, Z.G. Wu, W. Gao, P.H. Chung, J. Wang, S.C. Chen, Adv. Mater. 27, 4411 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Department of Chemistry and the Nebraska Center for Materials and Nanoscience (NCMN) at the University of Nebraska–Lincoln for start-up funds. S.A.M. thanks 3M for support through a Non-Tenured Faculty Award. This work was supported by the National Science Foundation under Grant No. 1555356. This research was performed in part at the Nebraska Nanoscale Facility: National Nanotechnology Coordinated Infrastructure and NCMN, which are supported by the National Science Foundation under Award No. ECCS:1542182, and the Nebraska Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Morin.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 171 kb)

Supplementary file2 (MPG 3938 kb)

Supplementary file3 (MPG 4884 kb)

Supplementary file4 (MPG 6956 kb)

Supplementary file5 (MPG 9482 kb)

Supplementary file6 (MPG 9856 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowen, J.J., Rose, M.A. & Morin, S.A. Surface molding of multi-stimuli-responsive microgel actuators. MRS Bulletin 46, 337–344 (2021). https://doi.org/10.1557/s43577-021-00077-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-021-00077-5

Keywords

Navigation