Skip to main content
Log in

Manufacturing and Performance Assessments of Several Applications of Electrotextiles and Large-Area Flexible Circuits

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Numerous applications of electrotextiles and flexible circuits have been identified that can advance systems performance for many commercial, military, and aerospace devices. Several novel uses of electrotextiles have been developed for lab testing, while others have been utilized in products on the commercial market, as well as items that have flown in space. ILC Dover, Inc. has utilized conductive fibers in various inflatable and tensile structures for signal transmission and electrostatic charge protection. Conductive and pressure sensitive textiles have been incorporated in the advanced development space suit (I-Suit) as switch controls for lights and rovers, and as signal transmission cables. Conductive fibers have been used in several stitched applications for electrostatic charge dissipation. These applications include large pharmaceutical containment enclosures where fine potent powders are being captured for transfer between manufacturing facilities, as well as impact attenuation airbags used in landing spacecraft on the surface of Mars. In both cases, conductive threads are uniquely located in seams and panel locations to gather and direct charge through surface fibers and panel interconnects. Conductive fibers have also been utilized in a conformal Sensate Liner garment for the identification of wound locations and medical sensor signal transmission for soldier health monitoring while on the battlefield. The performance challenges of these structures require a careful, systematic application of electrotextiles because of the flexing, straining, and exposure of the materials to harsh environments. ILC has also been developing “gossamer” spacecraft components utilizing unique materials and multi-functional structures to achieve extremely low mass and low launch volumes. Examples of large deployable structures featuring very thin, large flexible circuits for use in space include synthetic aperture radar (SAR) antennas, communications antenna reflectarrays, and active variable reflectance solar sails. Design and materials challenges of electrotextile and large-area flexible circuit membrane structures as demonstrated in engineered applications will be discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lind E.J., Eisler R., Jayaraman S., McKee T., A Sensate Liner for Personal Monitoring Applications, First International Symposium on Wearable Computers (ISWC), IEEE 1997.

    Google Scholar 

  2. Combat Soldier Sensate Liner Development Final Report 12 August, 1997 ILC Dover, Incorporated NRaD Contract N66001–96-C-8640 CDRL A006.

  3. Graziosi D., Ferl J., Performance Evaluations of an Advanced Space Suit Design for International Space Station and Planetary Application, 29th International Conference on Environmental Systems, Denver CO, 1999.

    Book  Google Scholar 

  4. Softswitch Textile Fabric Technologies, http://www.softswitch.co.uk/.

  5. Shook L.S., Evaluation of Candidate Hand Controllers for Use by a Space Suit Gloved Subject, Master of Science Thesis, SSL Document 02–013, University of Maryland at College Park, 2001.

    Google Scholar 

  6. Flexible Containment Technologies, ILC Dover Inc. website, http://www.ilcdover.com/Pharm/pharm.htm.

  7. Cadogan D., Sandy C., Grahne M., Development and Evaluation of the Mars Pathfinder Inflatable Airbag Landing System, 49th International Astronautical Congress, 1998.

    Google Scholar 

  8. Cadogan D., Grahne M., Mikulas M., Inflatable Space Structures–A New Paradigm For Space Structure Design, 49th International Astronautical Congress, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is for the Materials Research Society 2002 Fall Meeting, December 2-6, Boston Massachusetts. Symposium D: Electronics on Unconventional Substrates–Electrotextiles and Giant-Area Flexible Circuits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadogan, D.P., Shook, L.S. Manufacturing and Performance Assessments of Several Applications of Electrotextiles and Large-Area Flexible Circuits. MRS Online Proceedings Library 736, 15 (2002). https://doi.org/10.1557/PROC-736-D1.5

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-736-D1.5

Navigation