Skip to main content
Log in

Charge Transport in Mesoscopic Carbon Network Structures

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The charge transport and quantum interference effects in low-dimensional mesoscopic carbon networks prepared using self-assembling were investigated.

The mechanism of conduction in low-dimensional carbon networks was found to depend on the annealing temperature of the nitrocellulose precursor. The charge transport mechanism for carbon networks obtained at Tann=750°C was found to be the hopping conductivity in the entire investigated temperature range. The Coulomb gap near the Fermi level in the density of states was observed in the investigated carbon networks. The width of the Coulomb gap was found to be decreased with the annealing temperature of the carbon structures. The crossover from the strong localization to the weak localization regime of the charge transport in the carbon structures, obtained at Tann=950°C and Tann=1150°C, was observed in the temperature range T>100 K and T>20 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.W.P. Fung, Z.H. Wang, M.S. Dresselhaus et al. Phys. Rev. B. 49, 17325 (1994).

    Article  CAS  Google Scholar 

  2. A.W.P. Fung, M.S. Dresselhaus and M. Endo., Phys. Rev. B. 48, 14953 (1993).

    Article  CAS  Google Scholar 

  3. V. Bayot, L. Piraux, J.-P. Michenaud and J.-P. Issi., Phys. Rev. B. 40, 3514 (1989).

    Article  CAS  Google Scholar 

  4. P. Mandal, A. Neumann, A.G.M. Jansen et al. Phys. Rev. B. 55, 452 (1997).

    Article  CAS  Google Scholar 

  5. D. van der Putten, J.T. Moonen, H.B. Brom et al. Phys. Rev.Lett. 69, 494 (1992).

    Article  Google Scholar 

  6. A.W.P. Fung, G.A.M. Reynolds, Z.H. Wang et al. J. Non-Cryst. Solids. 186, 200 (1995).

    Article  CAS  Google Scholar 

  7. K. Yoshino, H. Kajii, Y. Kawagishi et al. Jap. J. Appl. Phys. 38, 4926 (1999).

    Article  CAS  Google Scholar 

  8. V.A. Samuilov, J. Galibert, V.K. Ksenevich, et al. Physica B, 294-295, 319 (2001).

    Article  Google Scholar 

  9. B.I. Shklovskii, A.L. Efros. Electronic Properties of Doped Semiconductors (Springer Series of Solid State Science, Springer, Berlin, 1984).

    Book  Google Scholar 

  10. N.F. Mott J. Non-Cryst. Solids. 1, 1 (1968).

    Article  CAS  Google Scholar 

  11. N. Mikoshiba. Phys. Rev. 127, 1961 (1962).

    Google Scholar 

  12. A.G. Zabrodski. Sov. Phys. Semicond. 14, 670 (1980).

    Google Scholar 

  13. R. Rosenbaum. Phys.Rev. B 44, 3599 (1991).

    Article  CAS  Google Scholar 

  14. P.A. Lee, T.V. Ramakrishnan. Rev. Mod. Phys. 57, 287 (1985).

    Article  CAS  Google Scholar 

  15. G. Bergman. Phys. Rep. 107, 1 (1984).

    Article  Google Scholar 

  16. J.J. Hauser. Solid St. Comm. 17 1577 (1975).

    Article  CAS  Google Scholar 

  17. T.V. Ramakrishnan. Phys. Rev. Lett. 42, 673 (1979).

    Article  Google Scholar 

  18. V. Bayot, L. Piraux, J.-P. Michenaud, and J.-P. Issi. Phys. Rev. B. 40, 3514 (1989).

    Article  CAS  Google Scholar 

  19. L. Langer, V. Bayot, E. Grivei et al. Phys. Rev. Lett. 76, 479 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ksenevich, V., Galibert, J., Samuilov, V. et al. Charge Transport in Mesoscopic Carbon Network Structures. MRS Online Proceedings Library 707, 991891 (2001). https://doi.org/10.1557/PROC-707-AA9.9.1/Y8.9.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-707-AA9.9.1/Y8.9.1

Navigation