Skip to main content
Log in

Dynamics of Silicon Oxidation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The rate-determining process in dry oxidation of silicon for thicker oxides (say above 10 nm) is probably the interstitial diffusion of oxygen molecules. For thinner oxides (a few nm), this simple picture is inadequate. The Deal-Grove model of oxidation kinetics fails. Oxide usually grows by an essentially layer-by-layer process, with growth at terraces, not steps, and perhaps oscillatory roughening. Isotope experiments show that interstitial and network oxygens exchange close to the Si/oxide interface and close to the oxide/gas interface. These results imply limiting mechanisms other than diffusion, probably involving charged oxygen species. We have made Density Functional (DFT) Generalised Gradient Approximation (GGA) calculations for a range of neutral and charged oxygen species to assess relative stabilities, diffusion mechanisms, and propensity for isotope exchange. These results identify acceptable mechanisms. We have also used Monte-Carlo methods to examine the consequences of the image interaction bias, and also the effects of the charge transfer processes (like tunnelling) by which charged species form. We comment on implications for oxide quality, especially on the relationship between growth processes and the charge and energy localisation components of breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hori, Gate Dielectrics and MOS ULSIs Springer, Berlin, (1997).

    Book  Google Scholar 

  2. W.H. Krautschneider, A. Kohlhase, and H. Terletzki, Microelectron. Reliab. 37, (1997), p. 19–37.

    Article  Google Scholar 

  3. C.J. Sofield and A.M. Stoneham, Semic. Sci. Tech. 10, (1995), p. 215–240.

    Article  CAS  Google Scholar 

  4. A.M. Stoneham and C.J. Sofield, Fundamental Aspects of Ultrathin Dielectrics in Si based devices: Towards an Atomic Understanding (edited E. Garfunkel, E. Gusev, A Vul'; Kluwer 1998), p. 79–88.

  5. C.J. Sofield and A.M. Stoneham, Semicond. Sci. Tech 10, (1995), p. 215–244.

    Article  CAS  Google Scholar 

  6. B.E. Deal and A.S. Grove, J. Appl. Phys. 36, (1965), p. 3770–3778.

    Article  CAS  Google Scholar 

  7. A.M. Stoneham, “Oxidation kinetics” Encyclopaedia of Materials, (2000), in press.

    Google Scholar 

  8. A.M. Stoneham and P.W. Tasker, Phil. Mag. B55, (1987), p. 237–252.

    Article  Google Scholar 

  9. P. Collot, G. Gautherin, B. Agius, S. Rigo and F. Rochet, Phil. Mag. B52, (1985), p. 1051.

    Article  Google Scholar 

  10. E.A. Irene and E.A. Lewis, Appl. Phys. Lett. 51, (1987), p. 767.

    Article  CAS  Google Scholar 

  11. A.M. Stoneham, C.R.M. Grovenor and A. Cerezo, Phil. Mag. B55, (1987), p. 201–210.

    Article  Google Scholar 

  12. C.K. Ong, A.M. Stoneham and A.H. Harker, Interface Science 1, (1993), p. 139–146.

    Article  CAS  Google Scholar 

  13. A. Stesmans, Phys. Rev. Lett. 70, (1993), p. 1723–1726.

    Article  CAS  Google Scholar 

  14. D. Hamann, Phys. Rev. Lett. 81, (1998), p.3447–3450.

    Article  CAS  Google Scholar 

  15. N.F. Mott, S. Rigo, F. Rochet and A.M. Stoneham, Phil. Mag. B60, (1989), p. 189–212.

    Article  Google Scholar 

  16. X. Zhang, C.K. Ong and A.M. Stoneham, J. Phys. Cond. Mat. 6, (1994), p. 5647

    Article  CAS  Google Scholar 

  17. D.R. Wolters and A.T.A. Zegers-van Duijnhoven, J. Electrochem. Soc. 139, (1992), p. 241–249.

    Article  CAS  Google Scholar 

  18. D.R. Wolters and A.T.A. Zegers-van Duijnhoven, Microelectronics Journal 24, (1993), p. 333.

    Article  CAS  Google Scholar 

  19. Jiazhan Xu, W.J. Choyke and John T. Yates Jr, J. Appl. Phys. 82, (1997), p. 6289.

    Article  CAS  Google Scholar 

  20. C. Martinet, R.A.B. Devine and M. Brunel, J. Appl. Phys. 81, (1997), p. 6996.

    Article  CAS  Google Scholar 

  21. N. Shamir, J.M. Mihaychuk and H.M. van Driel, Phys. Rev. Lett. 82, (1999), p. 359.

    Article  CAS  Google Scholar 

  22. M.J. Kirton and M.J. Uren, Adv. in Phys. 38, (1989), p. 367.

    Article  CAS  Google Scholar 

  23. J.P. Perdew, in Electronic Structure in Solids, edited by P. Zeische and H. Eschrig (Academie Verlag, Berlin 1991).

  24. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson and C. Fiolhais, Phys. Rev. B. 46, (1992), p. 6671.

    Article  CAS  Google Scholar 

  25. G. Kresse and J. Furthmuller, Phys. Rev. B 54, (1996), p. 11169.

    Article  CAS  Google Scholar 

  26. G. Kresse and J. Furthmuller, Comp. Mater. Sci. 6, (1996), p. 15.

    Article  CAS  Google Scholar 

  27. V. Makov and M.C. Payne, Phys. Rev. B 51, (1995), p. 4014.

    Article  CAS  Google Scholar 

  28. J.G. Mihaychuk, N. Shamir and H.M. van Driel, Phys. Rev. B 59, (1999), p. 2164–2173.

    Article  CAS  Google Scholar 

  29. J.L. Alay and M. Hirose, J. Appl. Phys. 81, (1997), p. 1606–1608.

    Article  CAS  Google Scholar 

  30. M.A. Szymanski, A.M. Stoneham and A.L. Shluger, (2000), to be published in special issue of Microelectronics Reliability, (proceedings of the 1999 Barcelona conference).

  31. V.J.B. Torres, A.M. Stoneham, C.J. Sofield, A.H. Harker, and C.F. Clement, Interface Science 3, (1995), p. 131–144.

    Article  Google Scholar 

  32. N. Cabrera and N.F. Mott, Rep. Prog. Phys. 12, (1948), p. 163–184.

    Article  Google Scholar 

  33. N. Itoh and A.M. Stoneham, (1997) to appear in Structure and Imperfections in Amorphous and Crystalline SiO2 (R Devine, ed) J Wiley, New York.

  34. X.D. Chen and J.M. Gibson, J. Vac. Sci. Tech. A17, (1999), p. 1269; F.M. Ross and J.M. Gibson, Phys. Rev. Lett. 68, (1992), p. 1782–1785.

    Article  CAS  Google Scholar 

  35. A.M. Stoneham, C.J. Sofield, A.H. Harker, M.A. Szymanski, A. Shluger (book article for KatayamaYoshida to appear in Physics and Control of Defects in Semiconductors)

  36. M. Niwa, T. Kouzaki, K. Okada, M. Udagawa and R. Sinclair, Jap. J. Appl. Phys. 33, (1994), p. 388–394.

    Article  CAS  Google Scholar 

  37. R. Degraeve, G. Groeseneken, R. Bellens, M. Depas and H.E. Maes, IEDM 95 (IEEE New York, 1995), p. 863–865. See also M. Depas, T. Nigam, and M.M. Heyns, IEEE Trans Electron Devices 43, (1996), p. 1499–1502.

    Google Scholar 

  38. D.J. DiMaria, E. Cartier and D.A. Buchanan, J. Appl. Phys. 80, (1996), p. 304–317.

    Article  CAS  Google Scholar 

  39. D.R. Wolters, and A.T.A Zegers-van Duijnhoven, (1996), Phil Trans Roy Soc A354 2327–2350.

    Google Scholar 

  40. D.J. DiMaria, Applied Physics Letters 68, (1996), p.3004–3006.

    Article  CAS  Google Scholar 

  41. P.E. Bloechl and J. Stathis, Phys. Rev. Lett. 83, (1999), p. 372–375.

    Article  Google Scholar 

  42. M.M. Heyns and A. von Schwerin, in Insulating Films on Semiconductors, edited by W. Eccleston and M.J. Uren, Institute of Physics Publishing, Bristol, UK., (1991)

  43. S. Jeffrey, C.J. Sofield and J.B. Pethica, Appl. Phys. Lett. 73, (1998), p. 172.

    Article  Google Scholar 

  44. G. Dearnaley, A.M. Stoneham and D.V. Morgan, Rep. Prog. Phys. 33, (1970), p. 1129–1192.

    Article  Google Scholar 

  45. M. Depas, B. Vermeire and M.M. Heyns, J. Appl. Phys. 80, (1996), p. 382.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Fujitsu European Centre for Information Technologies and by Fujitsu Laboratories, Japan. In particular we are grateful to Dr Ross Nobes and Dr Chioko Kaneta for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Stoneham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoneham, A.M., Szymanski, M.A. & Shluger, A.L. Dynamics of Silicon Oxidation. MRS Online Proceedings Library 592, 30–41 (1999). https://doi.org/10.1557/PROC-592-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-592-3

Navigation