Skip to main content
Log in

Simulation of Electromigration Induced Atomic Transport in Al−Cu Alloys

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

To improve the fundamental understanding of alloying effects in electromigration, in particular of Cu addition to Al conductor lines, the electromigration process in the grain boundary of an Al-Cu alloy is simulated using a 2D kinetic Monte Carlo method. These simulations give the fluxes of Al and Cu from microscopic parameters, which determine the probability of each atomic jump. The parameters used in these simulations are the diffusion barriers, the attempt frequencies, the electromigration driving force, the temperature, the Cu concentration, and the binding energy of a Cu-vacancy pair. Values for the electromigration driving force on Al and Cu atoms are calculated ab initio. A very interesting result of the kinetic Monte Carlo studies is that the Al flux is reversed due to the addition of a small amount of Cu if the binding energy for the Cu-vacancy pair is larger than 0.12 eV. Such an Al back flux can explain the strongly inhibiting effect of Cu on electromigration damage initiation and transport in Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Korhonen, P. Borgesen, K. N. Tu. and C.-Y. Li, J. Appl. Phys. 73, 3790 (1993).

    Article  CAS  Google Scholar 

  2. J. R. Lloyd and J. J. Clement, Appl. Phys. Lett. 69, 2486 (1996).

    Article  CAS  Google Scholar 

  3. J. P. Dekker, P. Gumbsch, E. Arzt. and A. Lodder, Phys. Rev. B 59, 7451 (1999).

    Article  CAS  Google Scholar 

  4. R. Rosenberg, J. Vac. Sci. Tech. 9, 263 (1972).

    Article  CAS  Google Scholar 

  5. T. Hoshino, R. Zeller. and P. H. Dederichs, Phys. Rev. B 53, 8971 (1996).

    Article  CAS  Google Scholar 

  6. T. Hoshino, R. Zeller, P. H. Dederichs. and T. Asada, Physica A 237-238, 361 (1997).

    Article  CAS  Google Scholar 

  7. C. Elsässer et al., J. Phys. Cond. Mat. 2, 4371 (1990).

    Article  Google Scholar 

  8. K.-M. Ho, C. Elsässer, C. T. Chan. and M. Fähnle, J. Phys. Cond. Mat. 4, 5189 (1992).

    Article  CAS  Google Scholar 

  9. B. Meyer, C. Elsässer. and M. Fähnle, FORTRAN90 Program for Mixed-basis Pseudopotential Calculations for Crystals, Max-Planck-Institut für Metallforschung Stuttgart (unpublished).

  10. R. S. Sorbello, A. Lodder. and S. J. Hoving, Phys. Rev. B 25, 6178 (1982).

    Article  CAS  Google Scholar 

  11. C. Bosvieux and J. Friedel, J. Phys. Chem. Solids 23, 123 (1962).

    Article  CAS  Google Scholar 

  12. J. P. Dekker, A. Lodder. and J. van Ek, Phys. Rev. B 56, 12167 (1997).

    Article  CAS  Google Scholar 

  13. R. S. Sorbello, Mat. Res. Soc. Symp. Proc. 225, 3 (1991).

    Article  CAS  Google Scholar 

  14. G. Martin, P. Bellon. and F. Soisson, Sol. State Phen. 42-43, 97 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekker, J.P., Elsässer, C. & Gumbsch, P. Simulation of Electromigration Induced Atomic Transport in Al−Cu Alloys. MRS Online Proceedings Library 563, 65–70 (1999). https://doi.org/10.1557/PROC-563-65

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-563-65

Navigation