Skip to main content
Log in

Polymer-Derived Si3N4/BN Composites

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Partially crystalline silicon nitride, with a specific surface area greater than 200 m2/g, is obtained by the pyrolysis of an organometallic, polymeric precursor under NH3 to 1000 °C. Additional heating to 1400 °C under N2 produces alpha-Si3N4. The addition of up to 15% h-BN was found to affect the coarsening characteristics of amorphous silicon nitride by promoting surface area reduction and suppressing crystallinity. By combining Si3N4 and BN molecular and polymeric precursors prior to ceramic conversion, or incorporating Si, N, and B into a single preceramic polymer, the relative proportion and crystallinity of the ceramic phases can be controlled in the resulting Si3N4/BN composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Fukunaga, T. Goto, M. Misawa, T. Hirai, and K. Suzuki, J. Non-Cryst. Solids, 95/96 (1987) 1119.

  2. T. Hirai in Emergent Process Methods for High-Technology Ceramics, Materials Science Research Vol. 17, eds. R. F. Davis, H. Palmour, and R. L. Porter, Plenum Press (1984) 329.

  3. T. Hirai, T. Goto, and T. Sakai in Emergent Process Methods for High-Technology Ceramics, Materials Science Research Vol. 17, eds. R. F. Davis, H. Palmour, and R. L. Porter, Plenum Press (1984) 347.

  4. T. Goto and T. Hirai, J. Mater. Sci. Letters, 7 (1988) 548.

  5. K. Sugiyama and Y. Ohsawa, J. Mater. Sci. Letters, 7 (1988) 1221.

  6. K. S. Mazdiyasni and R. Ruh, J. Am. Ceram. Soc., 64[7] (1981) 415.

  7. R. M. Laine, Y. Blum, R. Hamlin, and A. Chow in Ultrastructure Processing of Advanced Ceramics, eds. J. D. Mackenzie and D. R. Ulrich, J. Wiley & Sons (1988) 761.

  8. D. Seyferth, G. H. Wiseman, and C. Prud’homme, J. Am. Ceram. Soc., 66 (1983) C-13.

  9. K. J. L. Paciorek and R. H. Kratzer, Ceram. Eng. Sci. Proc., 9[7–8] (1988) 993.

  10. K. J. L. Paciorek, D. H. Harris, and R. H. Kratzer, J. Polym. Sci. Polym. Chem., 24 (1986) 173.

  11. C. K. Narula, R. Schaeffer, and R. T. Paine, J. Am. Chem. Soc., 109 (1987) 5556.

  12. D. Seyferth and W. S. Rees, Jr., Mat. Res. Soc. Symp. Proc., Vol. 121, Materials Research Society (1988).

  13. M. Mirabelli and L. Sneddon, Inorg. Chem., 27 (1988) 3271.

  14. J. Beck, C. Albani, A. McGhie, J. Rothman, and L. Sneddon, Chemistry of Materials, 1 (1989) 433.

  15. W. R. Schmidt, V. Sukumar, W. J. Hurley, Jr., R. Garcia, R. H. Doremus, L. V. Interrante, and G. M. Renlund, submitted to J. Am. Ceram. Soc., Oct. 1989.

  16. R. A. Nyquist and R. O. Kagel, Infrared Spectra of Inorganic Compounds, Academic Press (1971) 114.

  17. J. Thomas, Jr., N. E. Weston, and T. E. O’Connor, J. Am. Chem. Soc., 84[24] (1963) 4619.

  18. V. Sukumar, Master’s Thesis, Rensselaer Polytechnic Institute, December, 1989.

  19. V. Sukumar, W. R. Schmidt, R. H. Doremus, and L. V. Interrante, submitted to Mat. Letters., Dcc. 1989.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, W.R., Hurley, W.J., Sukumar, V. et al. Polymer-Derived Si3N4/BN Composites. MRS Online Proceedings Library 171, 79–84 (1989). https://doi.org/10.1557/PROC-171-79

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-171-79

Navigation