Skip to main content
Log in

The void fraction of melter feed during nuclear waste glass vitrification

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

To efficiently vitrify Hanford waste, the melting process (i.e., melter feed turning into waste glass) must be modeled and optimized. The rate of heat transfer to the melter feed in a waste glass melter, and thus the rate of melting, is strongly affected by the melter feed porosity, especially in the final stages where the glass-forming melt produces foam that insulates the feed from the molten glass. The volume expansion test allows the determination of the melter feed porosity as a function of temperature. This test measures the profile area of the feed pellet as it turns into glass. This contribution presents the calculation of the void fraction (porosity) of the melter feed as a function of temperature, heating rate, and material parameters. The process of finding the void fraction is described as well as results from the application of this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Kirkbride, G. K. Allen, R. M. Orme, R. S. Wittman, J. H. Baldwin, T. W. Crawford, J. Jo, L. J. Fergestrom, T. M. Hohl, D. L. Penwell, Tank waste remediation system operation and utilization plan, Vol. I, HNF-SD-WM-SP-012, Numatec Hanford Corporation, Richland Washington (1999).

    Google Scholar 

  2. R. Pokorny, P. Hrma, Mathematical modeling of cold cap, J. Nucl. Materials 429, 245–256 (2012).

    Article  CAS  Google Scholar 

  3. R. Pokorny, P. Hrma, Model for the conversion of nuclear waste melter feed to glass, J. Nucl. Materials 445, 190–199 (2014).

    Article  CAS  Google Scholar 

  4. J. A. Rice, R. Pokorny, M. J. Schweiger, P. Hrma, Determination of heat conductivity and thermal diffusivity of waste glass melter feed: Extension to high temperatures, J. Am. Ceram. Soc., 1–7 (2014).

    Google Scholar 

  5. P. Hrma, Melting of Foaming Batches: Nuclear Waste Glass, Glastech. Ber. 63K, 360–369 (1990).

    Google Scholar 

  6. R. Pokorny, A. A. Kruger, P. Hrma, Mathematical modeling of cold cap: Effect of bubbling on melting rate, Ceram. Silikaty 58, 296–304 (2014).

    CAS  Google Scholar 

  7. P. Hrma, M. J. Schweiger, C. J. Humrickhouse, J. A. Moody, R. M. Tate, T. T. Rainsdon, N. E. TeGrotenhuis, B. M. Arrigoni, J. Marcial, C. P. Rodriguez, B. H. Tincher, “Effect of glass-batch makeup on the melting process”, Ceramics-Silikaty 54, 193–211 (2010).

    CAS  Google Scholar 

  8. S. H. Henager, P. Hrma, K. J. Swearingen, M. J. Schweiger, J. Marcial, N. E. TeGrotenhuis, Conversion of batch to molten glass, I: Volume expansion, J. Non-Cryst. Solids 357, 829–835 (2011).

    Article  CAS  Google Scholar 

  9. R. Pokorny, D. A. Pierce, P. Hrma, Melting of glass batch: Model for multiple overlapping gas-evolving reactions, Thermochimica Acta 541, 8–14 (2012).

    Article  CAS  Google Scholar 

  10. C. Rodriguez, J. Chun, M. Schweiger, P. Hrma, Understanding cold-cap reactions of nuclear waste feeds through evolved gas analysis, Thermochimica Acta 592, 86–92 (2014).

    Article  CAS  Google Scholar 

  11. P. Hrma, K. J. Swearingen, S. H. Henager, M. J. Schweiger, J. Marcial, N. E. TeGrotenhuis, Conversion of batch to molten glass, II: Dissolution of quartz particles, J. Non-Cryst. Solids 357, 820–828 (2011).

    Article  CAS  Google Scholar 

  12. P. Hrma, J. Marcial, Dissolution retardation of solid silica during glass-batch melting, J. Non-Cryst. Solids 357, 2954–2959 (2011).

    Article  CAS  Google Scholar 

  13. J. Marcial, J. Chun, P. Hrma, M. J. Schweiger, Effect of bubbles and silica dissolution on melter feed rheology during conversion to glass, Environ. Sci. and Technol. 48, 12173–12180 (2014).

    Article  CAS  Google Scholar 

  14. P. Hrma, G. F. Piepel, M. J. Schweiger, D. E. Smith, D. S. Kim, P. E. Redgate, J. D. Vienna, C. A. LoPresti, D. B. Simpson, D. K. Peeler, M. H. Langowski, Property/Composition Relationships for Hanford High-Level Waste Glasses Melting at 1150°C, PNL-10359, Vol. 1 and 2, Pacific Northwest Laboratory, Richland, Washington (1994).

    Google Scholar 

  15. P. Hrma, Glass viscosity as a function of temperature and composition: A model based on Adam-Gibbs equation, J. Non-Cryst. Solids 354, 3389–3399 (2008).

    Article  CAS  Google Scholar 

  16. Y. Linard, H. Nonnet, T. Advocat, Physicochemical model for predicting molten glass density, J. Non-Cryst. Solids 354, 4917–4926 (2008).

    Article  CAS  Google Scholar 

  17. “Physical Constants of Inorganic Compounds”, in CRC Handbook of Chemistry and Physics, Internet Version 2005, David R. Lide, ed., < http://www.hbcpnetbase.com;, CRC Press, Boca Raton, FL, 2005

Download references

Acknowledgments

David Pierce, Brad Vanderveer: data collection

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilliard, Z.J., Hrma, P.R. The void fraction of melter feed during nuclear waste glass vitrification. MRS Online Proceedings Library 1744, 107–112 (2014). https://doi.org/10.1557/opl.2015.311

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.311

Navigation