Skip to main content
Log in

Simulation of a single dopant nanowire transistor

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Nowadays the silicon technology is capable of delivering sub-10 nm devices where ‘every atom counts’. Manipulation of atoms with high precision on such a scale, in principle, can lead to technological innovations, such as transistors with extremely short gate length, quantum computing components and optoelectronic devices. One possible strategy to create this next generation of devices is to precisely place individual discrete dopants (such as phosphorous atoms) in a nanoscale transistor.

In this paper, we report a systematic study of quantum transport simulation of an impact that precisely positioned dopants have on the performance of ultimately scaled gate-all-around silicon nanowire transistors (SNWT) designed for digital circuit applications. Due to strong inhomogeneity of self-consistent electrostatic potential, afull 3-Dreal-space Non Equilibrium Green’s Function (NEGF) formalism is used. The simulations are carried out for an n-channel NWT with a 2.2 x 2.2 nm2 cross-section and a 6 nm channel length, where locations of precisely arranged dopants in the source drain extensions and in the channel region have been varied. The individual dopants act as localized scatters and, hence, impact of electron transport is directly correlated to the position of the single dopants. As a result, a large variation in the ON-current and modest variation of the subthreshold slope are observed in theID-VG characteristics when comparing devices with microscopically different discrete dopant configuration. Introducing of channel surface roughness in the Ch Sym 1 wire induces a threshold voltage shift and ON-current variation in the device due to scattering. The variations of the current-voltage characteristics are analyzed with reference to the behaviour of the transmission coefficients. Our calculations provide guidance for a future development of the next generation components with sub-10 nm dimensions for the semiconductor industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Frank, R. H. Dennard, E. J. Nowak, P. M. Solomon, Y. Taur and H-S. P. Wong, Proc. IEEE 89, 259 (2001)

    Article  CAS  Google Scholar 

  2. J. J. Morton, D. R. McCamey, M. A. Eriksson and S. A. Lyon, Nature 479, 345 (2011)

    Article  CAS  Google Scholar 

  3. P. M. Koenraad and M.E. Flatte, Nature Mater. 10, 91 (2011)

    Article  CAS  Google Scholar 

  4. M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L. C. L. Hollenberg, G. Klimeck and M. Y. Simmons, Nature Nanotech. 7, 242 (2012)

    Article  CAS  Google Scholar 

  5. N. Singh, A. Agawal, L. K. Lakshmi, T-Y. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Quang, N. Balasubramanian, D. L. L. Kwong, IEEE Elec. Dev. Lett. 27, 383 (2006)

    Article  CAS  Google Scholar 

  6. B. C. Johnson, G. C. Tettamanzi, A. D. C. Alves, S. Thompson, C. Yang, J. Verduijn, J. A. Mol, M. Vinet, M. Sanquer, S. Rogge and D. N. Jamieson, Appl. Phys. Lett. 96, 264102 (2010)

    Article  Google Scholar 

  7. A. Martinez, N. Seoane, A. R. Brown, J. R. B. Barker and A. Asenov, IEEE Trans. Nanotechnol. 8, 603 (2009)

    Article  Google Scholar 

  8. A. Martinez, N. Seoane, A. R. Brown, J. R. B. Barker and A. Asenov, IEEE Trans, Elec. Dev. 57, 1626 (2010)

    Article  CAS  Google Scholar 

  9. N. Seoane, A. Martinez, A. R. Brown, J. R. B. Barker and A. Asenov, IEEE Trans, Elec. Dev. 56, 1388 (2009)

    Article  CAS  Google Scholar 

  10. A. Martinez, M. Aldegunde, N. Seoane, A. R. Brown, J. R. B. Barker and A. Asenov, IEEE Elect. Dev. 58, 2209 (2011)

    Article  CAS  Google Scholar 

  11. V. P. Georgiev, E. A. Towie, A. Asenov, IEEE Trans. Elec. Dev. 60, 965 (2013)

    Article  CAS  Google Scholar 

  12. http://www.goldstandardsimulations.com/products/garand//products/garand/

  13. R. Landauer, Philos. Mag. 21, 863 (1970)

    Article  CAS  Google Scholar 

  14. M. Buttiker, IBM J. Res. Dev. 32, 317 (1981)

    Article  Google Scholar 

  15. Y. Imry and R. Landauer, Rev. Mod. Phys. 71, 306 (1999)

    Article  Google Scholar 

  16. K. H. Hwan, K. H. Yeo, Y. Young, S.-D. Suk, M. Li, H. Jeong-Min, S.Min-Sang, D. W. Kim, D. G. Park, B. H. Hong, Y. C. Jung and S. W. Hwang, Appl. Phys. Lett. 92, 052 102 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asenov, A., Georgiev, V. Simulation of a single dopant nanowire transistor. MRS Online Proceedings Library 1564, 1 (2013). https://doi.org/10.1557/opl.2013.1078

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2013.1078

Navigation