Skip to main content
Log in

Formation of a single In(Ga)As/GaAs quantum dot embedded in a site-controlled GaAs nanowire by metalorganic chemical vapor deposition for application to single photon sources

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We report the formation and optical properties of site-controlled InAs/GaAs quantum dots (QDs) embedded in GaAs nanowires (NWs) by selective metalorganic chemical vapor deposition for application to single photon sources. InAs/GaAs QD-in-NWs with various InAs thicknesses are realized on patterned GaAs(111)B substrates in the form of InAs/GaAs heterostructures and identified by structural analyses using scanning transmission electron microscopy and photoluminescence characterization. Sharp excitonic emission peaks at 10 K from single QD-in-NWs with the narrowest exciton linewidth of 87 μeV are observed. Light emission from the single QD-in-NW shows photon antibunching which evidences single photon emission from high-quality QD-in-NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).

    Article  CAS  Google Scholar 

  2. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer and M. Loncar, Nature Nanotechnology 5 (2010) 195.

    Article  CAS  Google Scholar 

  3. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne and J. -M. Gérard, Nature Photon. 4 (2010) 174.

    Article  CAS  Google Scholar 

  4. R. Singh and G. Bester, Phys. Rev. Lett. 103, (2009) 063601.

    Article  CAS  Google Scholar 

  5. A. Schliwa, M. Winkelnkemper, A. Lochmann, E. Stock, and D. Bimberg, Phys. Rev. B 80, (2009) 161307.

    Article  CAS  Google Scholar 

  6. E. Ertekin, P. A. Greaney, D. C. Chrzan, and T. D. Sands, J. Appl. Phys. 97, 114325 (2005).

    Article  CAS  Google Scholar 

  7. F. Glas, Phys. Rev. B, 74, 121302 (2006).

    Article  CAS  Google Scholar 

  8. T. Nozawa and Y. Arakawa, Appl. Phys. Lett. 98, 171108 (2011).

    Article  CAS  Google Scholar 

  9. R. S. Wagner, and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  CAS  Google Scholar 

  10. J. Motohisa, J. Noborisaka, J. Takeda, M. Inari, and T. Fukui, J. Cryst. Growth 272, 180 (2004).

    Article  CAS  Google Scholar 

  11. N. Panev, A. I. Persson, N. Sköld, and L. Samuelson, Appl. Phys. Lett. 83, 2238 (2003).

    Article  CAS  Google Scholar 

  12. M. T. Borgström, V. Zwiller, E. Müller, and A. Imamoglu, Nano Lett. 5, 1439 (2005).

    Article  CAS  Google Scholar 

  13. H. Sanada, H. Gotoh, K. Tateno and H. Nakano, Jpn. J. of Appl. Phys. 46, 2578 (2007).

    Article  CAS  Google Scholar 

  14. S. N. Dorenbos, H. Sasakura, M. P. van Kouwen, N. Akopian, S. Adachi, N. Namekata, M. Jo, J. Motohisa, Y. Kobayashi, K. Tomioka, T. Fukui, S. Inoue, H. Kumano, C. M. Natarajan, R. H. Hadfield, T. Zijlstra, T. M. Klapwijk, V. Zwiller, and I. Suemune, Appl. Phys. Lett. 97, 171106 (2010).

    Article  CAS  Google Scholar 

  15. M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven and V. Zwiller, Nature Comms, 3:739 (2012).

    Article  CAS  Google Scholar 

  16. J. Renard, R. Songmuang, C. Bougerol, B. Daudin and B. Gayral, Nano Lett. 8, 2092 (2008).

    Article  CAS  Google Scholar 

  17. M. Paladugu, J. Zou, Y.-N. Guo, X. Zhang, Y. Kim, H. J. Joyce, Q. Gao, H. H. Tan and C. Jagadish, Appl. Phys. Lett. 93, 101911 (2008).

    Article  CAS  Google Scholar 

  18. M. Heiß, A. Gustafsson, S. Conesa-Boj, F. Peiró, J. R. Mo-rante, G. Abstreiter, J. Arbiol, L. Samuelson and A. F. Morral, Nanotechnology 20, 075603 (2009).

    Article  CAS  Google Scholar 

  19. J. N. Shapiro, A. Lin, P. S. Wong, A. C. Scofield, C. Tu, P. N. Senanayake, G. Mariani, B. L. Liang and D. L. Huffaker, Appl. Phys. Lett. 97, 243102 (2010).

    Article  CAS  Google Scholar 

  20. J. Tatebayashi, M. Nishioka, and Y. Arakawa, Appl. Phys. Lett. 78, 3469 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Special Coordination Funds for Promoting Science and Technology and Funding Program for World-Leading Innovative R&D on Science Technology. The authors would like to acknowledge Dr. T. Ishida, Ms. Y. Takayama and Prof. M. Fujita for TEM analyses of fabricated InAs/GaAs QD-in-NWs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tatebayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatebayashi, J., Ota, Y., Karunathillake, D. et al. Formation of a single In(Ga)As/GaAs quantum dot embedded in a site-controlled GaAs nanowire by metalorganic chemical vapor deposition for application to single photon sources. MRS Online Proceedings Library 1439, 115–119 (2012). https://doi.org/10.1557/opl.2012.912

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.912

Navigation