Skip to main content
Log in

Growth of aligned wurtzite GaN nanorods on Si(111): Role of Silicon nitride intermediate layer

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We present here a report on a role of initial nitridation of Si(111) surface on GaN nanorod growth. High quality wurtzite GaN nanorods are grown by Molecular Beam Epitaxy on bare Si(111)-7×7, crystalline and amorphous silicon nitride at 750oC, under nitrogen rich conditions. Using in-situ reflection high energy electron diffraction and ex-situ X-ray photoelectron spectroscopy, field emission scanning electron microscopy and photoluminescence, the structural and chemical properties are monitored. In the first part of the study, we have optimized the conditions of the N2* RF plasma, for formation of crystalline and amorphous silicon nitride on Si(111)-7×7 surface. While in the second part, GaN nanorods are grown on clean and these modified Si(111) substrates. Anisotropic spots are observed by RHEED for GaN grown on clean Si and on the amorphous silicon nitride, while circular, sharp and intense RHEED spots have been observed for GaN grown on crystalline Si3N4. FESEM results show nanorod growth in all the three different conditions. However, GaN nanorods grown on crystalline Si3N4 surface are observed to be self aligned and oriented along <0001> direction, while those grown on amorphous silicon nitride and bare Si(111) surfaces show great disorder increasing, respectively. Overall, the results clearly demonstrate that high quality of dense and self aligned c-oriented GaN nanorods can be formed on Si(111) surface by modifying it by appropriate nitridation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Thahab, H. Abu Hassan, and Z. Hassan, World Academy of Science, Engineering and Technology, 55 (2009) 11.

    Google Scholar 

  2. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater., 15 (2003) 353.

    Article  CAS  Google Scholar 

  3. J. H. Choi, A. Zoulkarneev, S. Kim, C. W. Baik, M. H. Yang, S. S. Park, H. Suh, U. J. Kim, H. B. Son, J. S. Lee, M. Kim, J. M. Kim and K. Kim, Nature Photonics, (In press doi:10.1038/nphoton.2011.253)

  4. Z. Chen, C. Cao, W. S. Li and C. Surya, Cryst. Growth Des., 9 (2009) 792.

    Article  CAS  Google Scholar 

  5. E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. He, P. Yang, Nano Lett., 3 (2003) 867.

    Article  CAS  Google Scholar 

  6. Zhaohui Zhong, Fang Qian, Deli Wang, and Charles M. Lieber, Nano Lett., 3 (2003) 343.

    Article  CAS  Google Scholar 

  7. S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, Chem. Phys. Lett., 389 (2004) 176.

    Article  CAS  Google Scholar 

  8. E. Callega, M.A. Sanchez-Garcia, F. J. Sanchez, F. Calle, F.B. Naranjo, E. Munoz. Phys. Rev. B, 62 (2000) 16826.

    Article  Google Scholar 

  9. D. G. Pacheco-Salazar, J. R. Leite, F. Cerdeira, E. A. Meneses, S. F. Li, D. J. As, and K Lischka. Semicond. Sci. Technol., 21 (2006) 846.

    Article  CAS  Google Scholar 

  10. T. Iwanaga, T. Suzuki, S. Yagi, T. Motooka. J. Appl. Phys., Vol 98 (2005) 104303.

    Article  Google Scholar 

  11. K. A. Bertness, N. A. Sanford, and A. V. Davydov, IEEE J. Select. Top. Quant. Electron., 847–858 (2010) 17.

    Google Scholar 

  12. X. Wang, X. Sun, M. Fairchild and S. D. Hersee, Appl. Phys. Lett. 89, (2006) 233115.

    Article  Google Scholar 

  13. S. D. Hersee, X. Sun and X. Wang, Nano Lett., 6 (2006) 1808.

    Article  CAS  Google Scholar 

  14. P. J. Pauzauskie, D. Talaga, K. Seo, P. Yang and F. L. Labarthet. J. Am. Chem. Soc., 127 (2005) 17146.

    Article  CAS  Google Scholar 

  15. V. Consonni, M. Knelangen, L. Geelhaar, A. Trampert, and H. Riechert, Phys. Rev. B, 81 (2010) 085310.

    Article  Google Scholar 

  16. O. Landre, C. Bougerol, H. Renevier and B. Daudin, Nanotechnology, 20 (2009) 415602.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof C. N. R. Rao for their encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Shivaprasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Tangi, M., Shetty, S. et al. Growth of aligned wurtzite GaN nanorods on Si(111): Role of Silicon nitride intermediate layer. MRS Online Proceedings Library 1411, 57–62 (2012). https://doi.org/10.1557/opl.2012.760

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.760

Key words

Navigation