Skip to main content
Log in

Nano Superlattice-like Materials as Thermal Insulators for Phase-Change Random Access Memory

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Nanoscale superlattice-like (SLL) dielectric was employed to reduce the power consumption of the Phase-change random access memory (PCRAM) cells. In this study, we have simulated and found that the cells with the SLL dielectric have a higher peak temperature compared to that of the cells with the SiO2 dielectric after constant pulse activation, due to the interface scattering mechanism. Scaling of the SLL dielectric has resulted in higher peak temperatures, which can be even higher after material/structural modifications. Furthermore, the SLL dielectric has good material properties that enable the cells to have high endurance. This shows the effectiveness of the SLL dielectric for advanced memory applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Lai, and T. Lowrey, IEDM Tech. Digest, 803 (2001).

  2. A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, IEDM Tech. Digest, 699 (2003).

  3. M. Wuttig, Nat. Mater. 4, 265 (2005).

    CAS  Google Scholar 

  4. T. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, and X. S. Miao, Appl. Phys. Lett. 88, 122114 (2006).

    Google Scholar 

  5. F. Rao, Z. Song, M. Zhong, L. Wu, G. Feng, B. Liu, S. Feng, and B. Chen, Jpn. J. Appl. Phys. 46, L25 (2007).

    CAS  Google Scholar 

  6. C. Wang, J. Zhi, S. Song, Z. Song, M. Sun, and B. Shen, Electrochem. Solid-State Lett. 14, H258 (2011).

    CAS  Google Scholar 

  7. D. Loke, L. P. Shi, W. J. Wang, R. Zhao, L. T. Ng, K. G. Lim, H. X. Yang, T. C. Chong, and Y. C. Yeo, Appl. Phys. Lett. 97, 243508 (2010).

    Google Scholar 

  8. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93, 793 (2003).

    CAS  Google Scholar 

  9. H. Tong, X. S. Miao, X. M. Cheng, H. Wang, L. Zhang, J. J. Sun, F. Tong, and J. H. Wang, Appl. Phys. Lett. 98, 101904 (2011).

    Google Scholar 

  10. C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Ke-blinski, and P. Zschack, Science 315, 351 (2007).

    CAS  Google Scholar 

  11. T. Yao, Appl. Phys. Lett. 51, 1798 (1987).

    CAS  Google Scholar 

  12. D. Loke, L. P. Shi, W. J. Wang, R. Zhao, H. X. Yang, L. T. Ng, K. G. Lim, T. C. Chong, and Y. C. Yeo, Nanotechnology 22, 254019 (2011).

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the support of this work by the NVM project of A*STAR and NUS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loke, D., Shi, L.P., Wang, W.J. et al. Nano Superlattice-like Materials as Thermal Insulators for Phase-Change Random Access Memory. MRS Online Proceedings Library 1404, 84–89 (2012). https://doi.org/10.1557/opl.2012.482

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.482

Navigation