Skip to main content
Log in

The role of three-phonon Normal processes in the thermal conductivity of graphene

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have studied the thermal conductivity of graphene using Callaway’s effective relax-ation time theory and by employing analytical expressions for phonon dispersion relations and vibrational density of states based on the semicontinuum model by Nihira and Iwata. It is found that consideration of the momentum conserving nature of three-phonon Normal pro-cesses is very important for explaining the magnitude as well as the temperature dependence of the experimentally measured results. At room temperature, the N-drift contribution (the correction term in Callaway’s theory) provides 94% addition to the result obtained from the single-mode relaxation time theory, clearly suggesting that the single-mode relaxation time approach is inadequate for describing the phonon conductivity of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).

    CAS  Google Scholar 

  2. W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, Nano Lett. 10, 1645 (2010).

    CAS  Google Scholar 

  3. C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R. R. Nair, and A. K. Geim, ACS Nano 4, 1889 (2010).

    CAS  Google Scholar 

  4. L. A. Jauregui, Y. Yue, A. N. Sidorov, and J. Hu, ECS Trans. 28, 73 (2010).

    CAS  Google Scholar 

  5. J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, and L. Shi, Science abf 328, 213 (2010).

    CAS  Google Scholar 

  6. J.-U. Lee, D. Yoon, H. Kim, S. W. Lee, and H. Cheong, Phys. Rev. B 83, 081419(R) (2011).

    Google Scholar 

  7. S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos. C. W. Magnuson, J. Kang, L. Shi, and R. S. Ruff, ACS Nano 5, 321 (2011).

    Google Scholar 

  8. P. G. Klemens, Proc. 26th Int. Thermal Cond. Conf. and 14th Int. Thermal Expan-sion Symposium, Aug. 6–8, 2001, Cambridge, MA (Thermal conductivity 26/Thermal expansion 14, Ed. Ralph Dinwiddie, DEStech Publs. Inc., 2004).

  9. D. L. Nika, S. Ghosh, E. P. Pokatilov, and A. A. Balandin, Appl. Phys. Lett. 94, 203103 (2009).

    Google Scholar 

  10. D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phys. Rev. B 79, 155413 (2009).

    Google Scholar 

  11. W. R. Zhong, M. P. Zhang, B. Q. Ai, D. Q. Zheng, Appl. Phys. Lett. 98, 113107 (2011).

    Google Scholar 

  12. G. P. Srivastava, The Physics of Phonons (Adam Hilger, Bristol, 1990).

    Google Scholar 

  13. J. Callaway, Phys. Rev. 113, 1046 (1959).

    CAS  Google Scholar 

  14. T. Nihira and T. Iwata, Phys. Rev. B 68, 134305 (2003).

    Google Scholar 

  15. S. Barman and G. P. Srivastava, J. Appl. Phys. 101, 123507 (2007).

    Google Scholar 

  16. G. A. Slack, Phys. Rev. 127, 694 (1962).

    CAS  Google Scholar 

Download references

Acknowledgement

Ayman Alofi gratefully acknowledges support from Taibah University, Madinah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alofi, A., Srivastava, G.P. The role of three-phonon Normal processes in the thermal conductivity of graphene. MRS Online Proceedings Library 1404, 66–71 (2012). https://doi.org/10.1557/opl.2012.358

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.358

Navigation