Skip to main content
Log in

Functional-DNA–Based Nanoscale Materials and Devices for Sensing Trace Contaminants in Water

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Trace contaminant detection in water represents both a grand challenge and great opportunity for materials scientists and engineers. The recent discovery that functional DNA can be obtained to bind selectively to a wide range of contaminants makes it possible to interface these molecules with nanoscale materials, such as gold nanoparticles and quantum dots, to transform the molecular reorganization between functional DNA and contaminants into physically detectable colorimetric and fluorescent signals. Micro- and nanofluidic devices have also played a critical role in lowering the detection limits of functional-DNA sensors, promoting sensor regeneration and thus improving sensor performance and allowing long-term unattended monitoring of water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Tuerk, L. Gold, Science 249, 505 (1990).

    Google Scholar 

  2. A.D. Ellington, J.W. Szostak, Nature 346, 818 (1990).

    Google Scholar 

  3. D.S. Wilson, J.W. Szostak, Annu. Rev. Biochem. 68, 611 (1999).

    Google Scholar 

  4. S.D. Jayasena, Clin. Chem. 45, 1628 (1999).

    Google Scholar 

  5. D. Shangguan, Y. Li, Z. Tang, Z.C. Cao, H.W. Chen, P. Mallikaratchy, K. Sefah, C.J. Yang, W. Tan, Proc. Natl. Acad. Sci. U.S.A. 103, 11838 (2006).

    Google Scholar 

  6. R.R. Breaker, Curr. Opin. Biotechnol. 13, 31 (2002).

    Google Scholar 

  7. J. Hesselberth, M.P. Robertson, S. Jhaveri, A.D. Ellington, Rev. Mol. Biotechnol. 74, 15 (2000).

    Google Scholar 

  8. M. Famulok, J.W. Szostak, Angew. Chem. 104, 1001 (1992).

    Google Scholar 

  9. D.P. Bartel, J.W. Szostak, Science 261, 1411 (1993).

    Google Scholar 

  10. R.R. Breaker, Chem. Rev. 97, 371 (1997).

    Google Scholar 

  11. N. Carmi, L.A. Shultz, R.R. Breaker, Chem. Biol. 3, 1039 (1996).

    Google Scholar 

  12. J.K. Bashkin, Curr. Biol. 7, R286 (1997).

    Google Scholar 

  13. C. Carola, F. Eckstein, Curr. Opin. Chem. Biol. 3, 274 (1999).

    Google Scholar 

  14. R.C. Conrad, L. Giver, Y. Tian, A.D. Ellington, Meth. Enzymol. 267, 336 (1996).

    Google Scholar 

  15. R.C. Conrad, F.M. Bruck, S. Bell, A.D. Ellington, in RNA: Protein Interactions: A Practical Approach C.W. J. Smith, Ed. (Oxford University Press, New York, 1998) pp. 285–325.

    Google Scholar 

  16. S.J. Klug, M. Famulok, Mol. Biol. Rep. 20, 97 (1994).

    Google Scholar 

  17. M. Kurz, R.R. Breaker, Curr. Top. Microbiol. Immunol. 243, 137 (1999).

    Google Scholar 

  18. D. Nieuwlandt, Curr. Innovations Mol. Biol. 5, 117 (1998).

    Google Scholar 

  19. Y. Lu, J. Liu, Acc. Chem. Res. 40, 315 (2007).

    Google Scholar 

  20. Y. Lu, J. Liu, Curr. Opin. Biotechnol. 17, 580 (2006).

    Google Scholar 

  21. J. Li, Y. Lu, J. Am. Chem. Soc. 122, 10466 (2000).

    Google Scholar 

  22. J. Li, W. Zheng, A.H. Kwon, Y. Lu, Nucleic Acids Res. 28, 481 (2000).

    Google Scholar 

  23. J. Liu, Y. Lu, Anal. Chem. 75, 6666 (2003).

    Google Scholar 

  24. J. Liu, A.K. Brown, X. Meng, D.M. Cropek, J.D. Istok, D.B. Watson, Y. Lu, Proc. Natl. Acad. Sci. U.S.A. 104, 2056 (2007).

    Google Scholar 

  25. J. Liu, Y. Lu, J. Am. Chem. Soc. 129, 9838 (2007).

    Google Scholar 

  26. J. Liu, Y. Lu, Angew. Chem., Int. Ed. 46, 7587 (2007).

    Google Scholar 

  27. W. Chiuman, Y. Li, Nucleic Acids Res. 35, 401 (2007).

    Google Scholar 

  28. S.H.J. Mei, Z. Liu, J.D. Brennan, Y. Li, J. Am. Chem. Soc. 125, 412 (2003).

    Google Scholar 

  29. Z. Liu, S.H.J. Mei, J.D. Brennan, Y. Li, J. Am. Chem. Soc. 125, 7539 (2003).

    Google Scholar 

  30. Y. Shen, G. Mackey, N. Rupcich, D. Gloster, W. Chiuman, Y. Li, J.D. Brennan, Anal. Chem. 79, 3494 (2007).

    Google Scholar 

  31. R. Nutiu, Y. Li, Methods 37, 16 (2005).

    Google Scholar 

  32. R. Nutiu, Y. Li, Angew. Chem., Int. Ed. 44, 1061 (2005).

    Google Scholar 

  33. R. Nutiu, Y. Li, Chem. Eur. J 10, 1868 (2004).

    Google Scholar 

  34. R. Nutiu, Y. Li, J. Am. Chem. Soc. 125, 4771 (2003).

    Google Scholar 

  35. C.B. Swearingen, D.P. Wernette, D.M. Cropek, Y. Lu, J.V. Sweedler, P.W. Bohn, Anal. Chem. 77, 442 (2005).

    Google Scholar 

  36. D.P. Wernette, C.B. Swearingen, D.M. Cropek, Y. Lu, J.V. Sweedler, P.W. Bohn, Analyst 131, 41 (2006).

    Google Scholar 

  37. D.P. Wernette, C. Mead, P.W. Bohn, Y. Lu, Langmuir 23, 9513 (2007).

    Google Scholar 

  38. T.C. Kuo, D.M. Cannon, M.A. Shannon, P.W. Bohn, J.V. Sweedler, Sens. Actuators A 102, 223 (2003).

    Google Scholar 

  39. T.C. Kuo, D.M. Cannon, Y.N. Chen, J.J. Tulock, M.A. Shannon, J.V. Sweedler, P.W. Bohn, Anal. Chem. 75, 1861 (2003).

    Google Scholar 

  40. I.-H. Chang, J.J. Tulock, J. Liu, W.-S. Kim, D.M. Cannon Jr., Y. Lu, P.W. Bohn, J.V. Sweedler, D.M. Cropek, Environ. Sci. Technol. 39, 3756 (2005).

    Google Scholar 

  41. K.A. Shaikh, K.S. Ryu, E.D. Goluch, J.-M. Nam, J. Liu, C.S. Thaxton, T.N. Chiesl, A.E. Barron, Y. Lu, C.A. Mirkin, C. Liu, Proc. Natl. Acad. Sci. U.S.A. 102, 9745 (2005).

    Google Scholar 

  42. J. Yguerabide, E.E. Yguerabide, Anal. Biochem. 262, 137 (1998).

    Google Scholar 

  43. R. Jin, G. Wu, Z. Li, C.A. Mirkin, G.C. Schatz, J. Am. Chem. Soc. 125, 1643 (2003).

    Google Scholar 

  44. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, Nature 382, 607 (1996).

    Google Scholar 

  45. R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Science 277, 1078 (1997).

    Google Scholar 

  46. J. Liu, Y. Lu, J. Am. Chem. Soc. 125, 6642 (2003).

    Google Scholar 

  47. J. Liu, Y. Lu, J. Am. Chem. Soc. 126, 12298 (2004).

    Google Scholar 

  48. J. Liu, Y. Lu, J. Am. Chem. Soc. 127, 12677 (2005).

    Google Scholar 

  49. J. Liu, Y. Lu, Org. Biomol. Chem. 4, 3435 (2006).

    Google Scholar 

  50. J. Liu, Y. Lu, Angew. Chem., Int. Ed. 45, 90 (2006).

    Google Scholar 

  51. J. Liu, Y. Lu, Nature Protocols 1, 246 (2006).

    Google Scholar 

  52. J. Liu, Y. Lu, Adv. Mater. 18, 1667 (2006).

    Google Scholar 

  53. D.E. Huizenga, J.W. Szostak, Biochemistry 34, 656 (1995).

    Google Scholar 

  54. D.Y. Wang, B.H.Y. Lai, D. Sen, J. Mol. Biol. 318, 33 (2002).

    Google Scholar 

  55. J. Liu, Y. Lu, Anal. Chem. 76, 1627 (2004).

    Google Scholar 

  56. H. Li, L.J. Rothberg, J. Am. Chem. Soc. 126, 10958 (2004).

    Google Scholar 

  57. L. Wang, X. Liu, X. Hu, S. Song, C. Fan, Chem. Commun., 3780 (2006).

  58. H. Wei, B. Li, J. Li, E. Wang, S. Dong, Chem. Commun., 3735 (2007).

  59. W. Zhao, W. Chiuman, M.A. Brook, Y. Li, ChemBioChem 8, 727 (2007).

    Google Scholar 

  60. J. Liu, J.H. Lee, Y. Lu, Anal. Chem. 79, 4120 (2007).

    Google Scholar 

  61. G.P. Mitchell, C.A. Mirkin, R.L. Letsinger, J. Am. Chem. Soc. 121, 8122 (1999).

    Google Scholar 

  62. Z. Gueroui, A. Libchaber, Phys. Rev. Lett. 93, 166108/1 (2004).

    Google Scholar 

  63. R. Wargnier, A.V. Baranov, V.G. Maslov, V. Stsiapura, M. Artemyev, M. Pluot, A. Sukhanova, I. Nabiev, Nano Lett. 4, 451 (2004).

    Google Scholar 

  64. E. Oh, M.-Y. Hong, D. Lee, S.-H. Nam, H.C. Yoon, H.-S. Kim, J. Am. Chem. Soc. 127, 3270 (2005).

    Google Scholar 

  65. L. Dyadyusha, H. Yin, S. Jaiswal, T. Brown, J.J. Baumberg, F.P. Booy, T. Melvin, Chem. Commun., 3201 (2005).

  66. K. Glynou, P.C. Ioannou, T.K. Christopoulos, V. Syriopoulou, Anal. Chem. 75, 4155 (2003).

    Google Scholar 

  67. M. Famulok, G. Mayer, Nature 439, 666 (2006).

    Google Scholar 

  68. J. Liu, D. Mazumdar, Y. Lu, Angew. Chem., Int. Ed. 45, 7955 (2006).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wernette, D.P., Liu, J., Bohn, P.W. et al. Functional-DNA–Based Nanoscale Materials and Devices for Sensing Trace Contaminants in Water. MRS Bulletin 33, 34–41 (2008). https://doi.org/10.1557/mrs2008.12

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.12

Navigation