Skip to main content
Log in

The Application of Computational Modeling to Pharmaceutical Materials Science

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Computational modeling is a ubiquitous technique in materials science, but until recently this approach has not been widely applied to the drug development process. The formation of particles, their kinematics, and their response to processing stresses are increasingly being studied using computational techniques (computational fluid dynamics and discrete element analysis). These computational techniques can be predictive tools to guide scientists who are designing pharmaceutical dosage forms with specific macroscopic properties. This article gives an overview of the types of computational methods that are used in pharmaceutical materials science and provides examples of their application to some problems from the literature and the authors’ own work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Chung, Computational Fluid Dynamics (Cambridge University Press, Cambridge, UK, 2002).

    Google Scholar 

  2. D.L. Davidson, in Proc. 6th World Congress of Chem. Eng. (Institution of Chemical Engineers in Australia, Melbourne, 2001).

    Google Scholar 

  3. P.A. Cundall and O.D.L. Strack, Geotechnique 29 (1979) p. 47.

    Google Scholar 

  4. S.E. Elghobashi and T.W. Abou-Arab, Phys. Fluids 26 (1983) p. 931.

    Google Scholar 

  5. C.M. Hrenya and J.L. Sinclair, AIChE J. 43 (1997) p. 853.

    Google Scholar 

  6. R. Jackson, Theory of Dispersed Multiphase Flows, edited by R. Meyer (Academic Press, New York, 1982) p. 291.

    Google Scholar 

  7. R. Chhabra, L. Agarwal, and N. Sinha, Powder Technol. 101 (1999) p. 88.

    Google Scholar 

  8. R. Morse and C. Ballou, Chem. Engr. Prog. 47 (1951) p. 199.

    Google Scholar 

  9. L. Huilin, H. Yurong, D. Gidaspow, Y. Lidan, and Q. Yukun, Powder Technol. 134 (2003) p. 86.

    Google Scholar 

  10. B. Van Wachem, J. Schouten, C. van den Bleek, R. Krishna, and J. Sinclair, AIChE J. 47 (2001) p. 1291.

    Google Scholar 

  11. R. Fan, D. Marchisio, and R. Fox, Powder Technol. 139 (2004) p. 7.

    Google Scholar 

  12. D.E. Oakley and R.E. Bahu, Drying (1991) p. 303.

  13. K. Masters, Dry. Technol. 12 (1994) p. 235.

    Google Scholar 

  14. D.B. Southwell, T.A.G. Langrish, and D.F. Fletcher, in Proc. 1st Asian-Australian Dry. Conf. (1999) p. 626.

  15. K. Masters, Proc. 10th Int. Dry. Symp. IDS ‘96 (1996) p. 52.

    Google Scholar 

  16. T.A.G. Langrish and D.F. Fletcher, Dry. Technol. 21 (2003) p. 197.

    Google Scholar 

  17. A. Goula and K. Adamopoulos, Dry. Technol. 22 (2004) p. 1107.

    Google Scholar 

  18. W. DeHaan and W. Finlay, J. Aerosol Sci. 35 (2003) p. 309.

    Google Scholar 

  19. E. Matida, W. Finlay, M. Rimkus, B. Grgic, and C. Lange, Aerosol Sci. 35 (2004) p. 823.

    Google Scholar 

  20. M. Coates, D. Fletcher, H. Chan, and J. Raper, J. Pharm. Sci. 93 (2004) p. 2863.

    Google Scholar 

  21. R. Han, A. Bakker, and B. Greenspan, presented at AAAR 2000, St. Louis, Missouri (2000).

  22. T. Gemci, B. Shortall, G. Allen, T. Corcoran, and N. Chigier, Aerosol Sci. 34 (2003) p. 1175.

    Google Scholar 

  23. Y. Zhang, W. Finlay, and E. Matida, Aerosol Sci. 35 (2004) p. 789.

    Google Scholar 

  24. C. Kleinstreuer and Z. Zhang, J. Biomed. Eng. 125 (2003) p. 197.

    Google Scholar 

  25. G. Allen, B. Shortall, T. Gemci, T. Corcoran, and N. Chigier, Trans. ASME 126 (2004) p. 604.

    Google Scholar 

  26. D.V. Ktitarev and D.E. Wolf, Computer Phys. Commun. 121–122 (1999) p. 303.

    Google Scholar 

  27. T. Yanagita, Phys. Rev. Lett. 82 (1999) p. 3488.

    Google Scholar 

  28. T. Shinbrot, M. Zeggio, and F.J. Muzzio, Powder Technol. 116 (2001) p. 224.

    Google Scholar 

  29. R. Jullien, P. Meakin, and A. Pavlovitch, Phys. Rev. Lett. 69 (1992) p. 640.

    Google Scholar 

  30. A.D. Fitt and P. Wilmott, Phys. Rev. A 45 (1992) p. 2383.

    Google Scholar 

  31. G.W. Baxter and R.P. Behringer, Phys. Rev. A 42 (1990) p. 1017.

    Google Scholar 

  32. L.S. Tsimring, R. Ramaswamy, and P. Sherman, Phys. Rev. E 60 (1999) p. 7126.

    Google Scholar 

  33. J. Hemmingsson, H.J. Herrmann, and S. Roux, J. Phys. I France 7 (1997) p. 291.

    Google Scholar 

  34. J. Kozicki and J. Tejchman, Granular Matter 7 (2005) p. 45.

    Google Scholar 

  35. A. Rosato, F. Prinze, K.J. Standburg, and R. Swendsen, Powder Technol. 49 (1986) p. 59.

    Google Scholar 

  36. A.D. Rosato, Y. Lan, and D.T. Wang, Powder Technol. 66 (1991) p. 149.

    Google Scholar 

  37. D.V. Khakhar, J.J. McCarthy, and J.M. Ottino, Chaos 9 (1999) p. 594.

    Google Scholar 

  38. C.S. Campbell and C.E. Brennen, J. Fluid Mech. 151 (1985) p. 167.

    Google Scholar 

  39. W.R. Ketterhagen, J.S. Curtis, and C.R. Wassgren, Phys. Rev. E 71 061307 (2005).

    Google Scholar 

  40. C.S. Campbell and C.E. Brennen, J. Appl. Mech. 52 (1985) p. 172.

    Google Scholar 

  41. N. Shishodia and C. Wassgren, Phys. Rev. Lett. 87 084302 (2001).

    Google Scholar 

  42. N. Shishodia and C. Wassgren, Phys. Rev. Lett. 88 109901 (2001).

    Google Scholar 

  43. C.R. Wassgren, J.A. Cordova, R. Zenit, and A. Karion, Phys. Fluids 15 (2005) p. 3318.

    Google Scholar 

  44. M.E. Lasinski, J.S. Curtis, and J.F. Pekny, Phys. Fluids 16 (2004) p. 265.

    Google Scholar 

  45. D. Gera, M. Gautam, Y. Tsuji, T. Kawaguchi, and T. Tanaka, Powder Technol. 98 (1998) p. 38.

    Google Scholar 

  46. M.A. van der Hoef, M. van Sint Annaland, and J.A.M. Kuipers, Chem. Eng. Sci. 59 (2004) p. 5157.

    Google Scholar 

  47. O.R. Walton and R.L. Braun, J. Rheol. 30 (1986) p. 949.

    Google Scholar 

  48. J. Schäfer, S. Dippel, and D.E. Wolf, J. Phys. I France 6 (1996) p. 5.

    Google Scholar 

  49. A. Di Renzo and F.P. Di Maio, Chem. Eng. Sci. 59 (2004) p. 525.

    Google Scholar 

  50. M.W. Weber, D.K. Hoffman, and C.M. Hrenya, Granular Matter 6 (2004) p. 239.

    Google Scholar 

  51. P.W. Cleary and M.L. Sawley, Appl. Math. Model. 26 (2002) p. 89.

    Google Scholar 

  52. J.M. Ting, M. Khwaja, L.R. Meachum, and J.D. Rowell, Int. J. Num. Anal. Methods Geomech. 17 (1993) p. 603.

    Google Scholar 

  53. M. Moakher, T. Shinbrot, and F.J. Muzzio, Powder Technol. 109 (2000) p. 58.

    Google Scholar 

  54. O.S. Sudah, P.E. Arratia, A. Alexander, and F.J. Muzzio, AIChE J. 51 (2005) p. 836.

    Google Scholar 

  55. H. Li and J.J. McCarthy, Phys. Rev. E 71 021305 (2005).

    Google Scholar 

  56. R.L. Stewart, J. Bridgwater, Y.C. Zhou, and A.B. Yu, Chem. Eng. Sci. 56 (2001) p. 5457.

    Google Scholar 

  57. M. Kwapinska, G. Saage, and E. Tsotsas, Powder Technol. 161 (2006) p. 69.

    Google Scholar 

  58. H.P. Kuo, P.C. Knight, D.J. Parker, Y. Tsuji, M.J. Adams, and J.P.K. Seville, Chem. Eng. Sci. 57 (2002) p. 3621.

    Google Scholar 

  59. C. Thornton, K.K. Yin, and M.J. Adams, J. Phys. D: Appl. Phys. 29 (1996) p. 424.

    Google Scholar 

  60. K.D. Kafui and C. Thornton, Powder Technol. 109 (2000) p. 113.

    Google Scholar 

  61. R. Moreno, M. Ghadiri, and S.J. Antony, Powder Technol. 130 (2003) p. 132.

    Google Scholar 

  62. A.V. Potapov and C.S. Campbell, Powder Technol. 81 (1994) p. 207.

    Google Scholar 

  63. A.V. Potapov and C.S. Campbell, Powder Technol. 94 (1997) p. 109.

    Google Scholar 

  64. J.A. Herbst and A.V. Potapov, Powder Technol. 143–144 (2004) p. 144.

    Google Scholar 

  65. A.U. Neil and J. Bridgwater, Powder Technol. 106 (1999) p. 37.

    Google Scholar 

  66. M. Ghadiri and Z. Zhang, Chem. Eng. Sci. 57 (2002) p. 3659.

    Google Scholar 

  67. T. Han, A. Levy, and H. Kalman, Powder Technol. 129 (2003) p. 92.

    Google Scholar 

  68. D.G. Papadopulos, C.S. Teo, and M. Ghadiri, presented at 3rd World Congress Particle Technol., AIChE (1998) paper 156.

  69. A.V. Potapov and C.S. Campbell, Phys. Fluids 8 (1996) p. 2884.

    Google Scholar 

  70. J.M. Rotter, J.M.F.G. Holst, J.Y. Ooi, and A.M. Sanad, Phil. Trans. Royal Soc. London A 356 (1998) p. 2685.

    Google Scholar 

  71. D. Hirshfeld and D.C. Rapaport, European Phys. J. E 4 (2001) p. 193.

    Google Scholar 

  72. T. Tanaka, Y. Kajiwara, and T. Inada, Trans. Iron and Steel Institute of Japan 28 (1988) p. 907.

    Google Scholar 

  73. W.R. Ketterhagen, J.S. Curtis, C.R. Wassgren, A. Kong, and P.J. Narayan, “Segregation during hopper discharge: A DEM and experimental study,” talk 364b, presented at the AIChE Annual Meeting (Cincinnati, OH, November 2, 2005).

  74. P.A. Langston, M.A. Al-Awamleh, F.Y. Fraige, and B.N. Asmar, Chem. Eng. Sci. 59 (2004) p. 425.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wassgren, C., Curtis, J.S. The Application of Computational Modeling to Pharmaceutical Materials Science. MRS Bulletin 31, 900–904 (2006). https://doi.org/10.1557/mrs2006.210

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.210

Keywords

Navigation