Skip to main content
Log in

Ultrafast switching in an atomic wire system at surfaces

  • Ultrafast Imaging of Materials Dynamics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Ultrafast electron diffraction has been employed for the study of structural dynamics at surfaces in the time domain. Experiments were performed in a pump-probe setup with femtosecond-laser excitation and subsequent probing through diffraction of a femtosecond electron pulse at a temporal resolution of 350 fs. The system of interest is one atomic layer of indium atoms on a Si(111) surface. Through self-assembly, indium atomic wires form and exhibit a Peierls-like, insulator-to-metal phase transition that can be driven nonthermally through a femtosecond laser pulse. The transient intensity of the diffraction spots indicates the lifting of the Peierls transition and melting of a charge-density wave in only 700 fs, heating of the surface in 6 ps, and formation of a metastable and supercooled phase, which exists for nanoseconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. R. Peierls, More Surprises in Theoretical Physics, Princeton Series in Physics (Princeton University Press, Princeton, NJ, 1991).

    Google Scholar 

  2. H.A. Jahn, E. Teller, Proc. R. Soc. Lond. A 161, 220 (1937).

    Google Scholar 

  3. C.W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Tóth, T. Guo, M. Kammler, M. Horn-von Hoegen, K.R. Wilson, D. von der Linde, C.P.J. Barty, Science 286, 1340 (1999).

    Google Scholar 

  4. A. Cavalleri, C.W. Siders, F.L.H. Brown, D.M. Leitner, C. Tóth, J.A. Squier, C.P.J. Barty, K.R. Wilson, K. Sokolowski-Tinten, M. Horn-von Hoegen, D. von der Linde, M. Kammler, Phys. Rev. Lett. 85, 586 (2000).

    Google Scholar 

  5. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kammler, M. Horn-von Hoegen, D. von der Linde, Nature 422, 287 (2003).

    Google Scholar 

  6. D.M. Fritz, D.A. Reis, B. Adams, R.A. Akre, J. Arthur, C. Blome, P.H. Bucksbaum, A.L. Cavalieri, S. Engemann, S. Fahy, R.W. Falcone, P.H. Fuoss, K.J. Gaffney, M.J. George, J. Hajdu, M.P. Hertlein, P.B. Hillyard, M. Horn-von Hoegen, M. Kammler, J. Kaspar, R. Kienberger, P. Krejcik, S.H. Lee, A.M. Lindenberg, B. McFarland, D. Meyer, T. Montagne, É.D. Murray, A.J. Nelson, M. Nicoul, R. Pahl, J. Rudati, H. Schlarb, D.P. Siddons, K. Sokolowski-Tinten, Th. Tschentscher, D. von der Linde, J.B. Hastings, Science 315, 633 (2007).

    Google Scholar 

  7. J. Weisshaupt, V. Juvé, M. Holtz, S.A. Ku, M. Woerner, T. Elsaesser, S. Ališauskas, A. Pugžlys, A. Baltuška, Nat. Photonics 8, 927 (2014).

    Google Scholar 

  8. M. Bargheer, N. Zhavoronkov, M. Woerner, T. Elsaesser, Chem. Phys. Chem. 7, 783 (2006).

    Google Scholar 

  9. M. Bargheer, J.C. Woo, N. Zhavoronkov, D.S. Kim, M. Woerner, T. Elsaesser, Phys. Status Solidi B 243, 2389 (2006).

    Google Scholar 

  10. A. Baltuska, G. Cerullo, Tabletop Intense Femtosecond Pulse Sources and Their Applications (Springer, Berlin, 2018).

    Google Scholar 

  11. A.M. Lindenberg, S.L. Johnson, D.A. Reis, Annu. Rev. Mater. Res. 47, 15 (2017).

    Google Scholar 

  12. B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, Science 302, 1382 (2003).

    Google Scholar 

  13. P. Baum, D.-S. Yang, A.H. Zewail, Science 318, 788 (2007).

    Google Scholar 

  14. G. Sciaini, M. Harb, S.G. Kruglik, T. Payer, C.T. Hebeisen, F.-J. Meyer zu Heringdorf, M. Yamaguchi, M. Horn-von Hoegen, R. Ernstorfer, R.J.D. Miller, Nature 458, 56 (2009).

    Google Scholar 

  15. M. Eichberger, H. Schäfer, M. Krumova, M. Beyer, J. Demsar, H. Berger, G. Moriena, G. Sciaini, R.J.D. Miller, Nature 468, 799 (2010).

    Google Scholar 

  16. M. Gao, C. Lu, H. Jean-Ruel, L.C. Liu, A. Marx, K. Onda, S. Koshihara, Y. Nakano, X. Shao, T. Hiramatsu, G. Saito, H. Yamochi, R.R. Cooney, G. Moriena, G. Sciaini, R.J.D. Miller, Nature 496, 343 (2013).

    Google Scholar 

  17. V. Morrison, R.P. Chatelain, K. Tiwari, A. Hendaoui, M. Chaker, B.J. Siwick, Science 346, 445 (2014).

    Google Scholar 

  18. R.P. Chatelain, V.R. Morrison, B.L.M. Klarenaar, B.J. Siwick, Phys. Rev. Lett. 113, 235502 (2014).

    Google Scholar 

  19. Y. Morimoto, P. Baum, Nat. Phys 14, 252 (2018).

    Google Scholar 

  20. S.P. Weathersby, G. Brown, M. Centurion, T.F. Chase, R. Coffee, J. Corbett, J.P. Eichner, J.C. Frisch, A.R. Fry, M. Gühr, N. Hartmann, C. Hast, R. Hettel, R.K. Jobe, E.N. Jongewaard, J.R. Lewandowski, R.K. Li, A.M. Lindenberg, I. Makasyuk, J.E. May, D. McCormick, M.N. Nguyen, A.H. Reid, X. Shen, K. Sokolowski-Tinten, T. Vecchione, S.L. Vetter, J. Wu, J. Yang, H.A. Dürr, X.J. Wang, Rev. Sci. Instrum. 86, 073702 (2015).

    Google Scholar 

  21. K. Sokolowski-Tinten, R. Li, A. Reid, S. Weathersby, F. Quirin, T. Chase, R. Coffee, J. Corbett, A. Fry, N. Hartmann, C. Hast, R. Hettel, M. Horn-von Hoegen, D. Janoschka, J. Lewandowski, M. Ligges, F. Meyer zu Heringdorf, X. Shen, T. Vecchione, C. Witt, J. Wu, H. Dürr, X. Wang, New J. Phys. 17, 113047 (2015).

    Google Scholar 

  22. G. Mourou, S. Williamson, Appl. Phys. Lett. 41, 44 (1982).

    Google Scholar 

  23. H.E. Elsayed-Ali, G.A. Mourou, Appl. Phys. Lett. 52, 103 (1988).

    Google Scholar 

  24. H.E. Elsayed-Ali, J.W. Herman, Rev. Sci. Instrum. 61, 1636 (1990).

    Google Scholar 

  25. M. Aeschlimann, E. Hull, J. Cao, C.A. Schmuttenmaer, L.G. Jahn, Y. Gao, H.E. Elsayed-Ali, D.A. Mantell, M.R. Scheinfein, Rev. Sci. Instrum. 66, 1000 (1995).

    Google Scholar 

  26. C.-Y. Ruan, F. Vigliotti, V.A. Lobastov, S. Chen, A.H. Zewail, Proc. Natl. Acad. Sci. U.S.A. 101, 1123 (2004).

    Google Scholar 

  27. F. Vigliotti, S. Chen, C.-Y. Ruan, V.A. Lobastov, A.H. Zewail, Angew. Chem. Int. Ed. Engl. 43, 2705 (2004).

    Google Scholar 

  28. C.-Y. Ruan, V.A. Lobastov, F. Vigliotti, S. Chen, A.H. Zewail, Science 304, 80 (2004).

    Google Scholar 

  29. A. Cavalleri, Science 318, 755 (2007).

    Google Scholar 

  30. A. Hanisch-Blicharski, A. Janzen, B. Krenzer, S. Wall, F. Klasing, A. Kalus, T. Frigge, M. Kammler, M. Horn-von Hoegen, Ultramicroscopy 127, 2 (2013).

    Google Scholar 

  31. A. Janzen, B. Krenzer, P. Zhou, D. von der Linde, M. Horn-von Hoegen, Surf. Sci. 600, 4094 (2006).

    Google Scholar 

  32. A. Janzen, B. Krenzer, O. Heinz, P. Zhou, D. Thien, A. Hanisch, F.-J. Meyer zu Heringdorf, D. von der Linde, M. Horn-von Hoegen, Rev. Sci. Instrum. 78, 013906 (2007).

    Google Scholar 

  33. B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, J. Appl. Phys. 92, 1643 (2002).

    Google Scholar 

  34. A. Ichimiya, P.I. Cohen, Reflection High Energy Electron Diffraction (Cambridge University Press, Cambridge, UK, 2004).

    Google Scholar 

  35. W. Braun, Applied RHEED: Reflection High-Energy Electron Diffraction during Crystal Growth (Springer, Berlin, 2013).

    Google Scholar 

  36. S. Vogelgesang, G. Storeck, J.G. Horstmann, T. Diekmann, M. Sivis, S. Schramm, K. Rossnagel, S. Schäfer, C. Ropers, Nat. Phys. 14, 184 (2018).

    Google Scholar 

  37. P. Baum, A.H. Zewail, Proc. Natl. Acad. Sci. U.S.A. 103, 16105 (2006).

    Google Scholar 

  38. P. Zhou, C. Streubühr, A. Kalus, T. Frigge, S. Wall, A. Hanisch-Blicharski, M. Kammler, M. Ligges, U. Bovensiepen, D. von der Linde, M. Horn-von Hoegen, EPJ Web Conf. 41, 10016 (2013).

    Google Scholar 

  39. T. Frigge, B. Hafke, T. Witte, B. Krenzer, C. Streubühr, A. Samad Syed, V. Mikši c´ Trontl, I. Avigo, P. Zhou, M. Ligges, D. von der Linde, U. Bovensiepen, M. Horn-von Hoegen, S. Wippermann, A. Lücke, S. Sanna, U. Gerstmann, W.G. Schmidt, Nature 544, 207 (2017).

    Google Scholar 

  40. P. Kury, R. Hild, D. Thien, H.-L. Günter, F.-J. Meyer zu Heringdorf, M. Horn-von Hoegen, Rev. Sci. Instrum. 76, 083906 (2005).

    Google Scholar 

  41. H.W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J. Schaefer, C.M. Lee, S.D. Kevan, T. Ohta, T. Nagao, S. Hasegawa, Phys. Rev. Lett. 82, 4898 (1999).

    Google Scholar 

  42. S.V. Ryjkov, T. Nagao, V.G. Lifshits, S. Hasegawa, Surf. Sci. 488, 15 (2001).

    Google Scholar 

  43. O. Bunk, G. Falkenberg, J.H. Zeysing, L. Lottermoser, R.L. Johnson, M. Nielsen, F. Berg-Rasmussen, J. Baker, R. Feidenhans’l, Phys. Rev. B Condens. Matter 59, 12228 (1999).

    Google Scholar 

  44. C. Kumpf, O. Bunk, J.H. Zeysing, Y. Su, M. Nielsen, R.L. Johnson, R. Feidenhans’l, K. Bechgaard, Phys. Rev. Lett. 85, 4916 (2000).

    Google Scholar 

  45. S. Wippermann, W.G. Schmidt, Phys. Rev. Lett. 105, 126102 (2010).

    Google Scholar 

  46. W.G. Schmidt, S. Wippermann, S. Sanna, M. Babilon, N.J. Vollmers, U. Gerstmann, Phys. Status Solidi B 249, 343 (2012).

    Google Scholar 

  47. S. Wall, B. Krenzer, S. Wippermann, S. Sanna, F. Klasing, A. Hanisch-Blicharski, M. Kammler, W.G. Schmidt, M. Horn-von Hoegen, Phys. Rev. Lett. 109, 186101 (2012).

    Google Scholar 

  48. S.J. Park, H.W. Yeom, S.H. Min, D.H. Park, I.-W. Lyo, Phys. Rev. Lett. 93, 106402 (2004).

    Google Scholar 

  49. H.-J. Kim, J.-H. Cho, Phys. Rev. Lett. 110, 116801 (2013).

    Google Scholar 

  50. F. Klasing, T. Frigge, B. Hafke, S. Wall, B. Krenzer, A. Hanisch-Blicharski, M. Horn-von Hoegen, Phys. Rev. B Condens. Matter 89, 121107 (R) (2014).

  51. L. Perfetti, P.A. Loukakos, M. Lisowski, U. Bovensiepen, H. Berger, S. Biermann, P.S. Cornaglia, A. Georges, M. Wolf, Phys. Rev. Lett. 97, 067402 (2006).

    Google Scholar 

  52. H. Schäfer, V.V. Kabanov, M. Beyer, K. Biljakovic, J. Demsar, Phys. Rev. Lett. 105, 066402 (2010).

    Google Scholar 

  53. L. Rettig, R. Cortés, J.-H. Chu, I.R. Fisher, F. Schmitt, R.G. Moore, Z.-X. Shen, P.S. Kirchmann, M. Wolf, U. Bovensiepen, Nat. Commun. 7, 10459 (2016).

    Google Scholar 

  54. S. Hellmann, T. Rohwer, M. Kalläne, K. Hanff, C. Sohrt, A. Stange, A. Carr, M.M. Murnane, H.C. Kapteyn, L. Kipp, M. Bauer, K. Rossnagel, Nat. Commun. 3, 1069 (2012).

    Google Scholar 

  55. P. Debye, Ann. Phys. 348, 49 (1913).

    Google Scholar 

  56. I. Waller, Z. Phys. A 17, 398 (1923).

    Google Scholar 

  57. T. Frigge, B. Hafke, T. Witte, B. Krenzer, M. Horn-von Hoegen, Struct. Dyn. 5, 025101 (2018).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft through SFB616 “Energy dissipation at surfaces,” FOR1700 “Metallic nanowires on the atomic scale: Electronic and vibrational coupling in real world systems,” SFB1242 “Non-equilibrium dynamics of condensed matter in the time domain,” FOR1405 “Dynamics of electron transfer processes within transition metal sites in biological and bioinorganic systems,” and the High Performance Computing Center Stuttgart and the Paderborn Center for Parallel Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Horn von Hoegen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Hoegen, M.H. Ultrafast switching in an atomic wire system at surfaces. MRS Bulletin 43, 512–519 (2018). https://doi.org/10.1557/mrs.2018.150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.150

Navigation