Skip to main content
Log in

Seeing dynamic phenomena with live scanning tunneling microscopy

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Scanning tunneling microscopy (STM) is an excellent technique to image the surfaces of materials with extreme spatial resolution. However, it is difficult to maintain its imaging quality when applying the technique under the conditions used in many practical processes, such as chemical vapor deposition and catalysis. In this article, we describe two special classes of STM instruments that are capable of maintaining good imaging quality under “difficult” conditions, namely, one for high and variable temperatures and the other for the combination of high temperatures and high gas pressures. In both cases, we discuss the special design features that make these instruments robust with respect to the challenging imaging conditions and provide examples to illustrate how they are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982).

    Article  Google Scholar 

  2. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 50, 120 (1983).

    Article  Google Scholar 

  3. K. Takayanagi, Y. Tnishiro, S. Takahashi, M. Takahashi, Surf. Sci. 164, 367 (1985).

    Article  Google Scholar 

  4. B.S. Swartzentruber, Y.-W. Mo, R. Kariotis, M.G. Lagally, M.B. Webb, Phys. Rev. Lett. 65, 1913 (1990).

    Article  Google Scholar 

  5. A. Pimpinelli, J. Villain, Physics of Crystal Growth (Cambridge University Press, Cambridge, UK, 1998).

  6. S.-J.L. Kang, Sintering: Densification, Grain Growth and Microstructure (Butterworth-Heinemann, Oxford, UK, 2005).

  7. G.A. Somorjai, Y. Li, Introduction to Surface Chemistry and Catalysis, 2nd ed. (Wiley, Hoboken, NJ, USA, 2010).

  8. P. Rahe, R. Bechstein, A. Kühnle, J. Vac. Sci. Technol. B 28, C4E31 (2010).

    Article  Google Scholar 

  9. A.M.J. den Haan, G.H.C.J. Wijts, F. Galli, O. Usenko, G.J.C. van Baarle, D.J. van der Zalm, T.H. Oosterkamp, Rev. Sci. Instrum. 85, 035112 (2014).

    Article  Google Scholar 

  10. Y.J. Song, A.F. Otte, Y. Kuk, Y. Hu, D.B. Torrance, P.N. First, W.A. de Heer, H. Min, S. Adam, M.D. Stiles, A.H. MacDonald, J.A. Stroscio, Nature 467, 185 (2010).

    Article  Google Scholar 

  11. J.W. Lyding, S. Skala, J.S. Hubacek, R. Brockenbrough, G. Gammie, J. Microsc. 152, 371 (1988).

    Article  Google Scholar 

  12. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications (Wiley, Chichester, UK, 2003).

  13. M.S. Hoogeman, D. Glastra van Loon, R.W.M. Loos, H.G. Ficke, E. de Haas, J.J. van der Linden, H. Zeijlemaker, L. Kuipers, M.F. Chang, M.A.J. Klik, J.W.M. Frenken, Rev. Sci. Instrum. 69, 2072 (1998).

    Article  Google Scholar 

  14. L. Kuipers, R.W.M. Loos, H. Neerings, J. ter Horst, G.J. Ruwiel, A.P. de Jongh, J.W.M. Frenken, Rev. Sci. Instrum. 66, 4557 (1995).

    Article  Google Scholar 

  15. G.C. Dong, D.W. van Baarle, J.W.M. Frenken, in Advances in Graphene Science, M. Aliofkhazraei, Ed. (InTech, 2013), p. 33, https://www.intechopen.com/books/advances-in-graphene-science.

  16. G.C. Dong, D.W. van Baarle, M.J. Rost, J.W.M. Frenken, ACS Nano 7, 7028 (2013).

    Article  CAS  Google Scholar 

  17. G.C. Dong, D.W. van Baarle, M.J. Rost, J.W.M. Frenken, New J. Phys. 14, 053033 (2012).

    Article  Google Scholar 

  18. I.M.N. Groot, J.W.M. Frenken, Eds., Operando Studies in Heterogeneous Catalysis (Springer-Verlag, Berlin, Germany, 2017).

  19. C.T. Herbschleb, P.C. van der Tuijn, S. Roobol, V. Navarro-Paredes, J.W. Bakker, Q. Liu, D. Stoltz, M.E. Cañas-Ventura, G. Verdoes, M. van Spronsen, M. Bergman, L. Crama, I. Taminiau, A. Ofitserov, G.J. van Baarle, J.W.M. Frenken, Rev. Sci. Instrum. 85, 083703 (2014).

    Article  Google Scholar 

  20. M.A. van Spronsen, J.W.M. Frenken, I.M.N. Groot, Nat. Commun. 8, 429 (2017).

    Article  Google Scholar 

  21. B.L.M. Hendriksen, J.W.M. Frenken, Phys. Rev. Lett. 89, 046101 (2002).

    Article  CAS  Google Scholar 

  22. B.L.M. Hendriksen, M.D. Ackermann, S.C. Bobaru, I. Popa, S. Ferrer, J.W.M. Frenken, Nat. Chem. 2, 730 (2010).

    Article  Google Scholar 

  23. M.D. Ackermann, T.M. Pedersen, B.L.M. Hendriksen, O. Robach, S.C. Bobaru, I. Popa, C. Quiros, H. Kim, B. Hammer, S. Ferrer, J.W.M. Frenken, Phys. Rev. Lett. 95, 255505 (2005).

    Article  Google Scholar 

  24. P. Mars, D.W. van Krevelen, Chem. Eng. Sci. 3, 41 (1954).

    Article  Google Scholar 

  25. C. Doornkamp, V. Ponec, J. Mol. Catal. A Chem. 162, 19 (2000).

    Article  Google Scholar 

  26. J.J.C. Geerlings, J.H. Wilson, G.J. Kramer, H.P.C.E. Kuipers, A. Hoek, H.M. Huisman, Appl. Catal. A Gen. 186, 27 (1999).

    Article  Google Scholar 

  27. G.P. Van der Laan, A.A.C.M. Beenackers, Catal. Rev. Sci. Eng. 41, 255 (1999).

    Article  Google Scholar 

  28. V. Navarro, M.A. van Spronsen, J.W.M. Frenken, Nat. Chem. 8, 929 (2016).

    Article  Google Scholar 

  29. K. Uosaki, R. Yamada, J. Am. Chem. Soc. 121, 4090 (1999).

    Article  Google Scholar 

  30. S.B. Roobol, M.E. Cañas-Ventura, M. Bergman, M.A. van Spronsen, W.G. Onderwaater, P.C. van der Tuijn, R. Koehler, A. Offitserov, G.J.C. van Baarle, J.W.M. Frenken, Rev. Sci. Instrum. 86, 033706 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This article is dedicated to our “pioneers” for the two featured STM systems, L. Kuipers, P.B. Rasmussen, and B.L.M. Hendriksen. Over a period of more than two decades, their work has been supported, augmented, and brought to further fruition by an “army” of scientific and technical staff members at Leiden University and, before that, at AMOLF, Amsterdam. Finally, we are indebted to G.J.C. van Baarle and his crew at Leiden Probe Microscopy B.V. (www.leidenprobemicroscopy.com) for teaming up with us in these endeavors and turning our prototypes into real products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost W. M. Frenken.

Additional information

The following article is based on the Innovation in Materials Characterization Award presentation given by Joost W.M. Frenken at the 2017 MRS Spring Meeting in Phoenix, Ariz. He is cited “for the development, application and commercialization of high-speed, temperature-controlled, in situ scanning probe microscopy, leading to key insights in the structure, dynamics and chemistry of surfaces and interfaces.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frenken, J.W.M., Groot, I.M.N. Seeing dynamic phenomena with live scanning tunneling microscopy. MRS Bulletin 42, 834–841 (2017). https://doi.org/10.1557/mrs.2017.239

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.239

Navigation