Skip to main content
Log in

Understanding interfacial water and its role in practical applications using molecular simulations

  • Water at Functional Interfaces
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Interfacial water is believed to determine practical outcomes in systems of interest to biology, materials science, geology, and many other disciplines. In this article, recent progress in understanding interfacial water achieved using molecular simulations is reviewed. After the reliability of recent approaches is discussed, three possible research directions are described. These future developments promise to have a large impact on both fundamental science and applications of societal importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. C. Vega, J.L.F. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011).

    Google Scholar 

  2. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, UK, 1989).

    Google Scholar 

  3. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, London, 2002).

    Google Scholar 

  4. C.G. Gray, K.E. Gubbins, C.G. Joslin, Theory of Molecular Fluids (Oxford University Press, Oxford, UK, 2011), vol. 2.

  5. A. Ben-Naim, Y. Marcus, J. Chem. Phys. 81, 2016 (1984).

    Google Scholar 

  6. W. Kauzmann, Adv. Protein Chem. 14, 1 (1959).

    Google Scholar 

  7. J.N. Israelachvili, Intermolecular and Surface Forces 3rd ed. (Academic Press, San Diego, CA, 2011).

  8. R.L. Baldwin, FEBS Lett. 587, 1062 (2013).

    Google Scholar 

  9. J. Wu, J.M. Prausnitz, Proc. Natl. Acad. Sci. U.S.A. 105, 9512 (2008).

    Google Scholar 

  10. H.S. Ashbaugh, L.R. Pratt, Rev. Mod. Phys. 78, 159 (2006).

    Google Scholar 

  11. H.S. Ashbaugh, L.R. Pratt, J. Phys. Chem. B 111, 9330 (2007).

    Google Scholar 

  12. M.I. Chaudhari, S.A. Holleran, H.S. Ashbaugh, L.R. Pratt, Proc. Natl. Acad. Sci. U.S.A. 110, 20557 (2013).

    Google Scholar 

  13. D. Roberts, R. Keeling, M. Tracka, C.F. van der Walle, S. Uddin, J. Warwicker, R. Curtis, Mol. Pharm. 11, 2475 (2014).

    Google Scholar 

  14. S.H. Lee, J.C. Rasaiah, J. Phys. Chem. 100, 1420 (1996).

    Google Scholar 

  15. D.E. Smith, L.X. Dang, J. Chem. Phys. 100, 3757 (1994).

    Google Scholar 

  16. L.X. Dang, T.B. Truong, B. Ginovska-Pangovska, J. Chem. Phys. 136, 126101 (2012).

    Google Scholar 

  17. L.X. Dang, X. Sun, B. Ginovska-Pangovska, H.V.R. Annapureddy, T.B. Truong, Faraday Discuss. 160, 151 (2013).

    Google Scholar 

  18. B.M. Rankin, D. Ben-Amotz, J. Am. Chem. Soc. 135, 8818 (2013).

    Google Scholar 

  19. R. Scheu, Y. Chen, H.B. de Aguiar, B.M. Rankin, D. Ben-Amotz, S. Roke, J. Am. Chem. Soc. 136, 2040 (2014).

    Google Scholar 

  20. P. Lo Nostro, B.W. Ninham, Chem. Rev. 112, 2286 (2012).

    Google Scholar 

  21. P. Jungwirth, P.S. Cremer, B. Hofmeister, Nat. Chem. 6, 261 (2014).

    Google Scholar 

  22. A. Striolo, Adsorpt. Sci. Technol. 29, 211 (2011).

    Google Scholar 

  23. A. Striolo, A.A. Chialvo, P.T. Cummings, K.E. Gubbins, Langmuir 19, 8583 (2003).

    Google Scholar 

  24. D. Argyris, N.R. Tummala, A. Striolo, D.R. Cole, J. Phys. Chem. C 112, 13587 (2008).

    Google Scholar 

  25. M.C. Gordillo, J. Marti, J. Phys. Condens. Matter 22, 284111 (2010).

    Google Scholar 

  26. D. Argyris, A. Phan, P.D. Ashby, A. Striolo, J. Phys. Chem. C 117, 10433 (2013).

    Google Scholar 

  27. J.C. Catalano, Geochim. Cosmochim. Acta 75, 2062 (2011).

    Google Scholar 

  28. J.C. Catalano, J. Phys. Chem. C 114, 6624 (2010).

    Google Scholar 

  29. A. Phan, T.A. Ho, D.R. Cole, A. Striolo, J. Phys. Chem. C 116, 15962 (2012).

    Google Scholar 

  30. J. Wang, A.G. Kalinichev, R.J. Kirkatrick, J. Phys. Chem. C 113, 11077 (2009).

    Google Scholar 

  31. G.A. Waychunas, Science 344, 1094 (2014).

    Google Scholar 

  32. D. Lis, E.H.G. Backus, J. Hunger, S.H. Parekh, M. Bonn, Science 344, 1138 (2014).

    Google Scholar 

  33. D. Argyris, P.D. Ashby, A. Striolo, ACS Nano 5, 2215 (2011).

    Google Scholar 

  34. R.M. Elder, A. Jayaraman, Soft Matter 9, 11521 (2013).

    Google Scholar 

  35. J. Wang, D. Bratko, A. Luzar, Proc. Natl. Acad. Sci. U.S.A. 108, 6734 (2011).

    Google Scholar 

  36. T.A. Ho, D.V. Papavassiliou, L.L. Lee, A. Striolo, Proc. Natl. Acad. Sci. U.S.A. 108, 16170 (2011).

    Google Scholar 

  37. S.N. Jamadagni, R. Godawat, S. Garde, Annu. Rev. Chem. Biomol. Eng. 2, 147 (2011).

    Google Scholar 

  38. S. Garde, A.J. Patel, Proc. Natl. Acad. Sci. U.S.A. 108, 16491 (2011).

    Google Scholar 

  39. A.J. Patel, P. Varilly, S.N. Jamadagni, H. Acharya, S. Garde, D. Chandler, Proc. Natl. Acad. Sci. U.S.A. 108, 17678 (2011).

    Google Scholar 

  40. A.J. Patel, P. Varilly, D. Chandler, S. Garde, J. Stat. Phys. 145, 265 (2011).

    Google Scholar 

  41. S.N. Jamadagni, R. Godawat, S. Garde, Langmuir 25, 13092 (2009).

    Google Scholar 

  42. S. Vembanur, A.J. Patel, S. Sarupria, S. Garde, J. Phys. Chem. B 117, 10261 (2013).

    Google Scholar 

  43. J. Rafiee, X. Mi, H. Gullapalli, A.V. Thomas, F. Yavari, Y.F. Shi, P.M. Ajayan, N.A. Koratkar, Nat. Mater. 11, 217 (2012).

    Google Scholar 

  44. C.-J. Shih, M.S. Strano, D. Blankschtein, Nat. Mater. 12, 866 (2013).

    Google Scholar 

  45. S. Sharma, P.G. Debenedetti, Proc. Natl. Acad. Sci. U.S.A. 109, 4365 (2012).

    Google Scholar 

  46. A.L. Ferguson, N. Giovambattista, P.J. Rossky, A.Z. Panagiotopoulos, P.G. Debenedetti, J. Chem. Phys. 137, 144501 (2012).

    Google Scholar 

  47. S. Sharma, P.G. Debenedetti, J. Phys. Chem. B 116, 13282 (2012).

    Google Scholar 

  48. S. Lin, C.-J. Shih, M.S. Strano, D. Blankschtein, J. Am. Chem. Soc. 133, 12810 (2011).

    Google Scholar 

  49. C.-J. Shih, S. Lin, M.S. Strano, D. Blankschtein, J. Am. Chem. Soc. 132, 14638 (2010).

    Google Scholar 

  50. A. Phan, D.R. Cole, A. Striolo, Langmuir 30, 8066 (2014).

    Google Scholar 

  51. K.B. Daly, J.B. Benziger, P.G. Debenedetti, A.Z. Panagiotopoulos, J. Phys. Chem. B 117, 12649 (2013).

    Google Scholar 

  52. F. Fornasiero, F. Krull, J.M. Prausnitz, C.J. Radke, Biomaterials 26, 5704 (2005).

    Google Scholar 

  53. A. Yethiraj, A. Striolo, J. Phys. Chem. Lett. 4, 687 (2013).

    Google Scholar 

  54. A. Striolo, K.E. Gubbins, T.D. Burchell, J.M. Simonson, D.R. Cole, M.S. Gruszkiewicz, A.A. Chialvo, P.T. Cummings, Langmuir 21, 9457 (2005).

    Google Scholar 

  55. N. Giovambattista, P.J. Rossky, P.G. Debenedetti, Annu. Rev. Phys. Chem. 63, 179 (2012).

    Google Scholar 

  56. A. Phan, D.R. Cole, A. Striolo, J. Phys. Chem. C 118, 4860 (2014).

    Google Scholar 

  57. S.N. Chakraborty, L.D. Gelb, J. Phys. Chem. B 116, 2183 (2012).

    Google Scholar 

  58. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Nature 452, 301 (2008).

    Google Scholar 

  59. J.M. Tour, C. Kittrell, V.L. Colvin, Nat. Mater. 9, 871 (2010).

    Google Scholar 

  60. D. Cohen-Tanugi, J.C. Grossman, Nano Lett. 12, 3602 (2012).

    Google Scholar 

  61. D. Konatham, J. Yu, T.A. Ho, A. Striolo, Langmuir 29, 11884 (2013).

    Google Scholar 

  62. C. Merlet, C. Péan, B. Rotenberg, P.A. Madden, B. Daffos, P.L. Taberna, P. Simon, M. Salanne, Nat. Commun. 4, 2701 (2013).

    Google Scholar 

  63. R.K. Kalluri, M.M. Biener, M.E. Suss, M.D. Merrill, M. Stadermann, J.D. Santiago, T.F. Baumann, J. Biener, A. Striolo, Phys. Chem. Chem. Phys. 15, 2309 (2013).

    Google Scholar 

  64. T.A. Ho, R.K. Kalluri, M.M. Biener, J. Biener, A. Striolo, J. Phys. Chem. C 117, 13609 (2013).

    Google Scholar 

  65. M.Z. Bazant, B.D. Storey, A.A. Kornyshev, Phys. Rev. Lett. 107, 046102 (2011).

    Google Scholar 

  66. P.H.R. Alijó, F.W. Tavares, E.C. Biscaia Jr., A.R. Secchi, Fluid Phase. Equilib. 362, 177 (2014).

    Google Scholar 

Download references

Acknowledgements

The author is grateful to several agencies for generous financial support. In particular, the US Department of Energy, the US National Science Foundation, the Alfred P. Sloan Foundation (via the Deep Carbon Observatory), and the EU Marie Curie Career Integration Grant are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Striolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Striolo, A. Understanding interfacial water and its role in practical applications using molecular simulations. MRS Bulletin 39, 1062–1068 (2014). https://doi.org/10.1557/mrs.2014.281

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.281

Navigation