Skip to main content
Log in

The development of organic spin valves from unipolar to bipolar operation

  • Organic Spintronics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

We review the first 10 years of research on organic spin-valve devices in the field of organic spintronics. The device figure of merit, magnetoresistance, is governed by the hyperfine interaction of the organic interlayer and the ability of the ferromagnetic electrodes to inject spin-polarized carriers. By choosing a deuterated π-conjugated polymer with a relatively long spin diffusion length as the organic interlayer and using a thin LiF buffer layer to raise the Fermi level of the cathode, a bipolar spin-valve device could be obtained in which the electroluminescence emission intensity is controlled by an external magnetic field. We show that the underlying physics of this spin-organic light-emitting diode is very different from that of a unipolar organic spin valve because of the magnetic properties of the spin-polarized bipolar space charge limited current in the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. V. Dediu, M. Murgia, F.C. Matacotta, C. Taliani, S. Barbanera, Solid State Commun. 122, 181 (2002).

    Google Scholar 

  2. M.N. Baibich, J.M. Broto, A. Fert, F.N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61 (21), 2472 (1988).

    Google Scholar 

  3. G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B: Condens. Matter 39 (7), 4828 (1989).

    Google Scholar 

  4. Z.H. Xiong, D. Wu, Z.V. Vardeny, J. Shi, Nature 427, 821 (2004).

    Google Scholar 

  5. F.J. Wang, Z.H. Xiong, D. Wu, J. Shi, Z.V. Vardeny, Synth. Met. 155 (1), 172 (2005).

    Google Scholar 

  6. S. Pramanik, S. Bandyopadhyay, K. Garre, M. Cahay, Phys. Rev. B: Condens. Matter 74, 235329 (2006).

    Google Scholar 

  7. S. Majumdar, R. Laiho, P. Laukkanen, I.J. Vayrynen, H.S. Majumdar, R. Osterbacka, Appl. Phys. Lett. 89 (12), 122114 (2006).

    Google Scholar 

  8. F.J. Wang, C.G. Yang, Z.V. Vardeny, X.G. Li, Phys. Rev. B: Condens. Matter 75, 245324 (2007).

    Google Scholar 

  9. T.S. Santos, J.S. Lee, P. Migdal, I.C. Lekshmi, B. Satpati, J.S. Moodera, Phys. Rev. Lett. 98, 016601 (2007).

    Google Scholar 

  10. T.D. Nguyen, E. Ehrenfreund, Z.V. Vardeny, Science 337, 204 (2012).

    Google Scholar 

  11. V.A. Dediu, L.E. Hueso, I. Bergenti, C. Taliani, Nat. Mater. 8, 707 (2009).

    Google Scholar 

  12. H.C.F. Martens, P.W.M. Blom, H.F.M. Schoo, Phys. Rev. B: Condens. Matter 61, 7489 (2000).

    Google Scholar 

  13. S. Pramanik, C.-G. Stefanita, S. Patibandla, S. Bandyopadhyay, K. Garre, N. Harth, M. Cahay, Nat. Nanotechnol. 2, 216 (2007).

    Google Scholar 

  14. J.H. Shim, K.V. Raman, Y.J. Park, T.S. Santos, G.X. Miao, B. Satpati, J.S. Moodera, Phys. Rev. Lett. 100, 226603 (2008).

    Google Scholar 

  15. A.J. Drew, J. Hoppler, L. Schulz, F.L. Pratt, P. Desai, P. Shakya, T. Kreouzis, W.P. Gillin, A. Suter, N.A. Morley, V.K. Malik, A. Dubroka, K.W. Kim, H. Bouyanfif, F. Bourqui, C. Bernhard, R. Scheuermann, G.J. Nieuwenhuys, T. Prokscha, E. Morenzoni, Nat. Mater. 8 (2), 109 (2009).

    Google Scholar 

  16. I. Bergenti, V. Dediu, E. Arisi, T. Mertelj, M. Murgia, A. Riminucci, G. Ruani, M. Solzi, C. Taliani, Org. Electron. 5, 309 (2004).

    Google Scholar 

  17. T.D. Nguyen, G. Hukic-Markosian, F.J. Wang, L. Wojcik, X.G. Li, E. Ehrenfreund, Z.V. Vardeny, Nat. Mater. 9, 345 (2010).

    Google Scholar 

  18. R. Lin, F. Wang, J. Rybicki, M. Wohlgenannt, K.A. Hutchinson, Phys. Rev. B: Condens. Matter 81, 195214 (2010).

    Google Scholar 

  19. D.L. Smith, R.N. Silver, Phys. Rev. B: Condens. Matter 64, 045323 (2001).

    Google Scholar 

  20. P.P. Ruden, D.L. Smith, J. Appl. Phys. 95, 4898 (2004).

    Google Scholar 

  21. L. Schulz, L. Nuccio, M. Willis, P. Desai, P. Shakya, T. Kreouzis, V.K. Malik, C. Bernhard, F.L. Pratt, N.A. Morley, A. Suter, G.J. Nieuwenhuys, T. Prokscha, E. Morenzoni, W.P. Gillin, A.J. Drew, Nat. Mater. 10 (1), 39 (2011).

    Google Scholar 

  22. T.M. Brown, R.H. Friend, I.S. Millard, D.J. Lacey, J.H. Burroughes, F. Cacially, Appl. Phys. Lett. 77, 3096 (2000).

    Google Scholar 

  23. S. Bandyopadhyay, Phys. Rev. B: Condens. Matter 81, 153202 (2010).

    Google Scholar 

  24. T.D. Nguyen, F. Wang, X.-G. Li, E. Ehrenfreund, Z.V. Vardeny, Phys. Rev. B: Condens. Matter 87, 075205 (2013).

    Google Scholar 

  25. M. Julliere, Phys. Lett. A 54 (3), 225 (1975).

    Google Scholar 

  26. E. Ehrenfreund, Z.V. Vardeny, Phys. Chem. Chem. Phys. 15, 7967 (2013).

    Google Scholar 

  27. H. Vinzelberg, J. Schumann, D. Elefant, R.B. Gangineni, J. Thomas, B. Büchner, J. Appl. Phys. 103, 093720 (2008).

    Google Scholar 

  28. J.-W. Yoo, H.W. Jang, V.N. Prigodin, C. Kao, C.B. Eom, A.J. Epstein, Phys. Rev. B: Condens. Matter 80, 205207 (2009).

    Google Scholar 

  29. T.D. Nguyen, G. Hukic-Markosian, F. Wang, X.-G. Li, E. Ehrenfreund, Z.V. Vardeny, Synth. Met. 161, 598 (2011).

    Google Scholar 

Download references

Acknowledgments

Supported by DOE Grant No. DE-FG02–04ER46109 (isotope exchange; T.D.N. and Z.V.V.), NSF grant No. DMR-1104495 and MRSEC, DMR-1121252 program at the UoU (bipolar OSV; T.D.N. and Z.V.V.), Israel Science Foundation Grant No. ISF 472/11 (bipolar SCLC model; E.E.), and the US-Israel BSF Grant No. 2010135 (spin-OLED; Z.V.V. and E.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eitan Ehrenfreund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.D., Ehrenfreund, E. & Vardeny, Z.V. The development of organic spin valves from unipolar to bipolar operation. MRS Bulletin 39, 585–589 (2014). https://doi.org/10.1557/mrs.2014.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.129

Navigation