Skip to main content

Advertisement

Log in

Toward more environmentally friendly routes to high purity ionic liquids

  • Ionic liquids for energy applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) are a very interesting new class of fluid materials because of their unique characteristics, such as wide chemical, thermal, and electrochemical stability, high ion conduction, non-detectable vapor pressure, nonflammability, and good-to-excellent capability to dissolve inorganic, organic, and polymer compounds. ILs are proposed for a very wide variety of applications, including electrochemical devices. However, high purity ILs, particularly for high-energy electrochemical applications, are not widely available commercially. In addition, solvent restriction and environmental impact, as well as the possibility to fully recycle chemicals and reagents, represent the most stringent requirements for the future synthesis processes of ILs. This article reviews synthesis route improvements in terms of environment impact solvents, chemical recycling and cost, and process yield for obtaining high purity (below 50 ppm) ILs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 39, 372 (2000).

    Google Scholar 

  2. J.R.D. Rogers, K.R. Seddon, Ionic Liquids: Industrial Application to Green Chemistry (ACS Symposium Series 818) (American Chemical Society, Washington, 2002).

    Google Scholar 

  3. M.J. Earle, K.R. Seddon, Pure Appl. Chem. 72, 1391 (2000).

    CAS  Google Scholar 

  4. J.L. Anderson, J. Ding, T. Welton, D.W. Armstrong, J. Am. Chem. Soc. 124, 14247 (2002).

    CAS  Google Scholar 

  5. J. Dupont, R.F. de Souza, P.A.Z. Suarez, Chem. Rev. 102, 3667 (2002).

    CAS  Google Scholar 

  6. C.-M. Jin, C. Ye, B.S. Phillips, J.S. Zabinski, X. Liu, W. Liu, J.M. Shreeve, J. Mater. Chem. 16, 1529 (2006).

    CAS  Google Scholar 

  7. M.E. Van Valkenburg, R.L. Vaughn, M. Williams, J.S. Wilkes, Thermochim. Acta 425, 181 (2005).

    Google Scholar 

  8. B. Wu, R.G. Reddy, R.D. Rogers, Proceedings of Solar Forum 2001 Solar Energy: The Power to Choose, April 21–25, 2001, Washington, DC.

  9. A.I. Bhatt, I. May, V.A. Volkovich, M.E. Hetherington, B. Lewin, R.C. Thied, N. Ertok, J. Chem. Soc., Dalton Trans. 24, 4532 (2002).

    Google Scholar 

  10. S. Panozzo, M. Armand, O. Stephan, Appl. Phys. Lett. 80, 679 (2002).

    CAS  Google Scholar 

  11. P. Wang, S.M. Zakeeruddin, I. Exnar, M. Gratzel, Chem. Commun. 22, 2972 (2002).

    Google Scholar 

  12. J. Fuller, A.C. Breda, R.T. Carlin, J. Electroanal. Chem. 459, 29 (1998).

    CAS  Google Scholar 

  13. H. Nakagawa, S. Izuchi, K. Kunawa, T. Nukuda, Y. Aihara, J. Electrochem. Soc. 150, A695 (2003).

    CAS  Google Scholar 

  14. H. Sakaebe, H. Matsumoto, Electrochem. Commun. 5, 594 (2003).

    CAS  Google Scholar 

  15. A. Noda, M.A.B.H. Susan, K. Kudo, S. Mitsushima, K. Hayamizu, M. Watanabe, J. Phys. Chem. B 107, 4024 (2003).

    CAS  Google Scholar 

  16. A. Balducci, R. Dugas, P.L. Taberna, P. Simon, D. Plée, M. Mastragostino, S. Passerini, J. Power Sources 20, 922 (2007).

    Google Scholar 

  17. G.-T. Kim, G.B. Appetecchi, M. Montanino, F. Alessandrini, S. Passerini, ECS Trans. 25, 127 (2010).

    CAS  Google Scholar 

  18. G.B. Appetecchi, M. Montanino, A. Balducci, S.F. Lux, M. Winter, S. Passerini, J. Power Sources 192, 599 (2009).

    CAS  Google Scholar 

  19. S.F. Lux, M. Schmuck, G.B. Appetecchi, S. Passerini, M. Winter, A. Balducci, J. Power Sources 192, 606 (2009).

    CAS  Google Scholar 

  20. A. Guerfi, S. Duchesne, Y. Kobayashi, A. Vijh, K. Zaghib, J. Power Sources 175, 866 (2008).

    CAS  Google Scholar 

  21. T. Sugimoto, Y. Atsumi, M. Kikuta, E. Ishiko, M. Kono, M. Ishikawa, J. Power Sources 189, 802 (2009).

    CAS  Google Scholar 

  22. H. Matsumoto, H. Sakaebe, K. Tatsumi, M. Kikuta, E. Ishiko, M. Kono, J. Power Sources 160, 1308 (2006).

    CAS  Google Scholar 

  23. G.T. Kim, S.S. Jeong, M. Joost, E. Rocca, M. Winter, S. Passerini, A. Balducci, J. Power Sources 195, 6130 (2010).

    CAS  Google Scholar 

  24. S.F. Lux, F. Schappacher, A. Balducci, S. Passerini, M. Winter, J. Electrochem. Soc. 157, A320 (2010).

    CAS  Google Scholar 

  25. G.-T. Kim, S.S. Jeong, M.-Z. Xue, A. Balducci, M. Winter, S. Passerini, F. Alessandrini, G.B. Appetecchi, J. Power Sources 199, 239 (2012).

    CAS  Google Scholar 

  26. J.-H. Shin, W.A. Henderson, G.B. Appetecchi, F. Alessandrini, S. Passerini, Electrochim. Acta 50, 3859 (2005).

    CAS  Google Scholar 

  27. G.-T. Kim, G.B. Appetecchi, F. Alessandrini, S. Passerini, J. Power Sources 171, 861 (2007).

    CAS  Google Scholar 

  28. G.B. Appetecchi, G.T. Kim, M. Montanino, F. Alessandrini, S. Passerini, J. Power Sources 196, 6703 (2011).

    CAS  Google Scholar 

  29. P. Wasserscheid, T. Welton, Ionic Liquid in Synthesis (VCH-Wiley, Weinheim, 2002).

    Google Scholar 

  30. T. Welton, Chem. Rev. 99, 2071 (1999).

    CAS  Google Scholar 

  31. D.R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth, J. Phys. Chem. B 103, 4164 (1999).

    CAS  Google Scholar 

  32. W.H. Henderson, S. Passerini, Chem. Mater. 16 (15), 2881 (2004).

    CAS  Google Scholar 

  33. G.B. Appetecchi, S. Scaccia, C. Tizzani, F. Alessandrini, S. Passerini, J. Electrochem. Soc. 153 (9), A1685 (2006).

    CAS  Google Scholar 

  34. A. Fernicola, F. Croce, B. Scrosati, T. Watanabe, H. Ohno, J. Power Sources 174, 342 (2007).

    CAS  Google Scholar 

  35. S.D. Arco, R.T. Laxamana, O.D. Giron, J.M. Obliosca, Philipp. J. Sci. 138 (2), 133 (2009).

    Google Scholar 

  36. G.B. Appetecchi, M. Montanino, M. Carewska, M. Moreno, F. Alessandrini, S. Passerini, Electrochim. Acta 56, 1300 (2011).

    CAS  Google Scholar 

  37. M. Montanino, F. Alessandrini, S. Passerini, G.B. Appetecchi, Electrochim. Acta 96, 124 (2013).

    CAS  Google Scholar 

  38. M. Moreno, M. Montanino, M. Carewska, G.B. Appetecchi, S. Jeremias, S. Passerini, Electrochim. Acta 99, 108 (2013).

    CAS  Google Scholar 

  39. R.T. Morrison, R.N. Boyd, Organic Chemistry, 3rd ed. (Allyn and Bacon, Boston, 1973).

    Google Scholar 

  40. N.L. Allinger, M.P. Cava, D.C. De Jongh, C.R. Johnson, N.A. Lebel, C.L. Stevens, Organic Chemistry, 2nd ed. (Worth Publishers, New York, 1976).

    Google Scholar 

  41. G.B. Appetecchi, M. Montanino, D. Zane, M. Carewska, F. Alessandrini, S. Passerini, Electrochim. Acta 54, 1325 (2009).

    CAS  Google Scholar 

  42. M. Montanino, M. Carewska, F. Alessandrini, S. Passerini, G.B. Appetecchi, Electrochim. Acta 57, 153 (2011).

    CAS  Google Scholar 

  43. D.R. MacFarlane, J. Huang, M. Forsyth, Nature 402, 792 (1999).

    CAS  Google Scholar 

  44. I. Tommasi, F. Sorrentino, Tetrahedron Lett. 46, 2141 (2005).

    CAS  Google Scholar 

  45. B. Clare, A. Sirwardana, D.R. MacFarlane, Topics in Current Chemistry— Synthesis, Purification and Characterization of Ionic Liquids (Springer, NY, 2009), p. 290.

    Google Scholar 

  46. A.L. Monteiro, M. Seferin, J. Dupont, R.F. de Souza, Polyhedron 15, 1217 (1996).

    Google Scholar 

  47. A. Boesmann, R. Van Hal, P. Wasserscheid, PCT Patent EP2003/002127 (September 12, 2003).

  48. M. Castriota, T. Caruso, R.G. Agostino, E. Cazzanelli, W.A. Henderson, S. Passerini, J. Phys. Chem. A 109, 92 (2005).

    CAS  Google Scholar 

  49. I. Nicotera, C. Oliviero, W.A. Henderson, G.B. Appetecchi, S. Passerini, J. Phys. Chem. B 109, 22814 (2005).

    CAS  Google Scholar 

  50. J.S. Wilkes, M.J. Zaworotko, J. Chem. Soc., Chem. Commun. 1992, 965 (1992).

    Google Scholar 

  51. W.R. Pitner, K.R. Seddon, K.M. Stack, A. Curzons, R. Freer, Patent WO 01/40146 (July 6, 2001).

  52. C.C. Cassol, B. Costa Ferrera, G. Ebeling, J. Dupont, US Patent 7,825,259 B2 (November 2, 2010).

  53. J.D. Holbrey, W.M. Reichert, R.P. Swatloski, G.A. Broker, W.R. Pitner, K.R. Seddon, R.D. Rogers, Green Chem. 4, 407 (2002).

    CAS  Google Scholar 

  54. J.J. Jodry, K. Mikami, Tetrahedron Lett. 45, 4429 (2004).

    CAS  Google Scholar 

  55. P.B. Silveira, V.R. Lando, J. Dupont, A.L. Monteiro, Adv. Synth. Catal. 153, 344 (2002).

    Google Scholar 

  56. J.H. Davis Jr, C.M. Gordon, C. Hilgers, P. Wasserscheid, in Ionic Liquid in Synthesis, P. Wasserscheid, T. Welton, Eds. (Wiley, Weinheim, 2003), C. 2.

    Google Scholar 

  57. P.J. Scammells, J.L. Scott, R.D. Singer, Aust. J. Chem. 58, 155 (2005).

    CAS  Google Scholar 

  58. B.R. Clare, P.M. Bayley, A.S. Best, M. Forsyth, D.R. MacFarlane, Chem. Commun. 23, 2689 (2008).

    Google Scholar 

  59. F. Endres, S.Z. Abedin, N. Borissenko, Z. Phys. Chem. 210 1377 (2008).

    Google Scholar 

  60. P. Nockemann, K. Binnemans, K. Driesen, Chem. Phys. Lett. 415, 13 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Passerini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passerini, S., Appetecchi, G.B. Toward more environmentally friendly routes to high purity ionic liquids. MRS Bulletin 38, 540–547 (2013). https://doi.org/10.1557/mrs.2013.155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.155

Navigation