Skip to main content
Log in

Mechanical response of mesoscopic aluminum rings under uniaxial compression

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The strength of materials exhibits size effects at sample dimensions <1 mm. In the literature, two trends are identified in the length scale spectrum: smaller is stronger at <10 μn; larger is stronger at >500 μn. The dimension at which the transition between these two trends occurs remained unclear. We study this mesoscopic scale (20–400 urn) by examining the compression response of ring and pillar-shaped Al specimens. Integrating present results with literature data, we provide Al’s compression response in a “master curve” fashion. We demonstrate the inadequacies of the classical surface layer model, and suggest directions for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, and U. Engel: Microforming. CIRP Ann. 50, 445 (2001).

    Article  Google Scholar 

  2. M.W. Fu and W.L. Chan: A review on the state-of-the-art microforming technologies. Int. J. Adv. Manuf. Technol. 67, 2411 (2013).

    Article  Google Scholar 

  3. G. Zabow, A.P. Koretsky, and J. Moreland: Design and fabrication of a micromachined multispectral magnetic resonance imaging agent. J. Micromech. Microeng. 19, 25020 (2009).

    Article  Google Scholar 

  4. G. Zabow, S. Dodd, J. Moreland, and A. Koretsky: Micro-engineered local field control for high-sensitivity multispectral MRI. Nature 453, 1058 (2008).

    Article  CAS  Google Scholar 

  5. N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475 (1994).

    Article  CAS  Google Scholar 

  6. J.S. Stölken and A.G. Evans: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109 (1998).

    Article  Google Scholar 

  7. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).

    Article  CAS  Google Scholar 

  8. M.D. Uchic, P.A. Shade, and D.M. Dimiduk: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).

    Article  CAS  Google Scholar 

  9. U. Engel and R. Eckstein: Microforming–from basic research to its realization. J. Mater. Process. Technol. 125–126(January), 35 (2002).

    Article  Google Scholar 

  10. W.L. Chan, M.W. Fu, and J. Lu: Experimental and simulation study of deformation behavior in micro-compound extrusion process. Mater. Des. 32, 525 (2011).

    Article  CAS  Google Scholar 

  11. W.L. Chan, M.W. Fu, J. Lu, and J.G. Liu: Modeling of grain size effect on micro deformation behavior in micro-forming of pure copper. Mater. Sci. Eng. A 527, 6638 (2010).

    Article  Google Scholar 

  12. X. Zhang, B. Zhang, Y. Mu, S. Shao, C.D.C.D. Wick, B.R. Ramachandran, and W.J. Meng: Mechanical failure of metal/ceramic interfacial regions under shear loading. Acta Mater. 138, 224 (2017).

    Article  CAS  Google Scholar 

  13. B. Zhang, Y. Song, G.Z. Voyiadjis, and W.J. Meng: Assessing texture development and mechanical response in microscale reverse extrusion of copper. J. Mater. Res. (2018). DOI: 10.1557/jmr.2018.22.

    Google Scholar 

  14. M.W. Fu and W.L. Chan: in Micro-Scaled Prod. Dev. via Microforming Deform. Behav. Process. Tool. Its Realiz (Springer London, London, 2014), pp. 9–55.

    Book  Google Scholar 

  15. S. Miyazaki, K. Shibata, and H. Fujita: Effect of specimen thickness on mechanical properties of polycrystalline aggregates with various grain sizes. Acta Metall. 27, 855 (1979).

    Article  CAS  Google Scholar 

  16. Y. Shen, H.P. Yu, and X.Y. Ruan: Discussion and prediction on decreasing flow stress scale effect. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 16, 132 (2006).

    Article  Google Scholar 

  17. L. Peng, X. Lai, H.-J. Lee, J.-H. Song, and J. Ni: Analysis of micro/mesoscale sheet forming process with uniform size dependent material constitutive model. Mater. Sci. Eng. A 526, 93 (2009).

    Article  Google Scholar 

  18. L. Peng, F. Liu, J. Ni, and X. Lai: Size effects in thin sheet metal forming and its elastic–plastic constitutive model. Mater. Des. 28, 1731 (2007).

    Article  CAS  Google Scholar 

  19. X. Lai, L. Peng, P. Hu, S. Lan, and J. Ni: Material behavior modelling in micro/meso-scale forming process with considering size/scale effects. Comput. Mater. Sci. 43, 1003 (2008).

    Article  Google Scholar 

  20. K.S. Ng and A.H.W. Ngan: Deformation of micron-sized aluminium bi-crystal pillars. Philos. Mag. 89, 3013 (2009).

    Article  CAS  Google Scholar 

  21. K.S. Ng and A.H.W. Ngan: Effects of trapping dislocations within small crystals on their deformation behavior. Acta Mater. 57, 4902 (2009).

    Article  CAS  Google Scholar 

  22. H. Gao and Y. Huang: Geometrically necessary dislocation and size-dependent plasticity. Scr. Mater. 48, 113 (2003).

    Article  CAS  Google Scholar 

  23. K.S. Ng and A.H.W. Ngan: Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56, 1712 (2008).

    Article  CAS  Google Scholar 

  24. A. Kunz, S. Pathak, and J.R. Greer: Size effects in Al nanopillars: single crystalline vs. bicrystalline. Acta Mater. 59, 4416 (2011).

    Article  CAS  Google Scholar 

  25. R. Gu and A.H.W. Ngan: Effects of pre-straining and coating on plastic deformation of aluminum micropillars. Acta Mater. 60, 6102 (2012).

    Article  CAS  Google Scholar 

  26. Z.H. Aitken, D. Jang, C.R. Weinberger, and J.R. Greer: Grain boundary sliding in aluminum nano-bi-crystals deformed at room temperature. Small 10, 100 (2014).

    Article  CAS  Google Scholar 

  27. Z.-J. Wang, Q.-J. Li, Z.-W. Shan, J. Li, J. Sun, and E. Ma: Sample size effects on the large strain bursts in submicron aluminum pillars. Appl. Phys. Lett. 100, 71906 (2012).

    Article  Google Scholar 

  28. Q. Yu, R.K. Mishra, J.W. Morris, and A.M. Minor: The effect of size on dislocation cell formation and strain hardening in aluminium. Philos. Mag. 94, 2062 (2014).

    Article  CAS  Google Scholar 

  29. T. Hu, L. Jiang, H. Yang, K. Ma, T.D. Topping, J. Yee, M. Li, A.K. Mukherjee, J.M. Schoenung, and E.J. Lavernia: Stabilized plasticity in ultrahigh strength, submicron Al crystals. Acta Mater. 94, 46 (2015).

    Article  CAS  Google Scholar 

  30. Y. Kim, S. Lee, J.B. Jeon, Y.-J. Kim, B.-J. Lee, S.H. Oh, and S.M. Han: Effect of a high angle grain boundary on deformation behavior of Al nanopillars. Scr. Mater. 107, 5 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge partial project support from the US National Science Foundation (NSF OIA-1541079). The experimental work used facilities at the LSU shared instrumentation facility (SIF), a part of the NSF EPSCoR CIMM core user facilities (CUFs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Meng.

Electronic supplementary material

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.81

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Ahmed, S., Shao, S. et al. Mechanical response of mesoscopic aluminum rings under uniaxial compression. MRS Communications 8, 1254–1260 (2018). https://doi.org/10.1557/mrc.2018.81

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.81

Navigation