Skip to main content

Advertisement

Log in

Three-dimensional cell culture of human mesenchymal stem cells in nanofibrillar cellulose hydrogels

  • Biomaterials for 3D Cell Biology Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Human mesenchymal stem cells (MSCs) are the most intensely studied and clinically used adult stem cell type. Conventional long-term cultivation of MSCs as a monolayer is known to result in a reduction of their functionality and viability. In addition, large volumes of cell culture medium are required to obtain cell quantities needed for their clinical use. In this proof of concept study, we cultivated human MSCs within a three-dimensional nanofibrillar cellulose (NFC) hydrogel. We show that NFC is biocompatible with human MSCs, and represents a feasible approach to upscaling of their culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. R.R. Sharma, K. Pollock, A. Hubel, and D. McKenna: Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54, 1418 (2014).

    Article  CAS  Google Scholar 

  2. M. Gnecchi, H. He, N. Noiseux, O.D. Liang, L. Zhang, F. Morello, H. Mu, L.G. Melo, R.E. Pratt, J.S. Ingwall, and V.J. Dzau: Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 20, 661 (2006).

    Article  CAS  Google Scholar 

  3. R.C. Lai, F. Arslan, M.M. Lee, N.S. Sze, A. Choo, T.S. Chen, M. Salto-Tellez, L. Timmers, C.N. Lee, R.M. El Oakley, G. Pasterkamp, D.P. de Kleijn, and S.K. Lim: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 4, 214 (2010).

    Article  CAS  Google Scholar 

  4. L. Kordelas, V. Rebmann, A.K. Ludwig, S. Radtke, J. Ruesing, T.R. Doeppner, M. Epple, P.A. Horn, D.W. Beelen, and B. Giebel: MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28, 970 (2014).

    Article  CAS  Google Scholar 

  5. U. Ben-David, Y. Mayshar, and N. Benvenisty: Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells. Cell Stem Cell 9, 97 (2011).

    Article  CAS  Google Scholar 

  6. J.J. Bara, R.G. Richards, M. Alini, and M.J. Stoddart: Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells 32, 1713 (2014).

    Article  CAS  Google Scholar 

  7. V. Turinetto, E. Vitale, and C. Giachino: Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int. J. Mol. Sci. 17, 1164 (2016).

  8. S.S. Ho, K.C. Murphy, B.Y. Binder, C.B. Vissers, and J.K. Leach: Increased survival and function of mesenchymal stem cell spheroids entrapped in instructive alginate hydrogels. Stem Cells Transl. Med. 5, 773 (2016).

    Article  CAS  Google Scholar 

  9. A.W. Lund, J.P. Stegemann, and G.E. Plopper: Mesenchymal stem cells sense three dimensional type I collagen through discoidin domain receptor 1. Open Stem Cell J. 1, 40 (2009).

    CAS  Google Scholar 

  10. O.F. Gardner, G. Musumeci, A.J. Neumann, D. Eglin, C.W. Archer, M. Alini, and M.J. Stoddart: Asymmetrical seeding of MSCs into fibrin-poly(ester-urethane) scaffolds and its effect on mechanically induced chondrogenesis. J. Tissue Eng. Regen. Med. (2016). doi: 10.1002/term.

    Google Scholar 

  11. P.M. Favi, R.S. Benson, N.R. Neilsen, R.L. Hammonds, C.C. Bates, C.P. Stephens, and M.S. Dhar: Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 1935 (2013).

    Article  CAS  Google Scholar 

  12. A. Cochis, S. Grad, M.J. Stoddart, S. Fare, L. Altomare, B. Azzimonti, M. Alini, and L. Rimondini: Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel. Sci. Rep. 7, 45018 (2017).

    Article  CAS  Google Scholar 

  13. Y. Yamaguchi, J. Ohno, A. Sato, H. Kido, and T. Fukushima: Mesenchymal stem cell spheroids exhibit enhanced in-vitro and in-vivo osteoregenerative potential. BMC Biotechnol. 14, 105 (2014).

    Article  Google Scholar 

  14. M.A. Serban, Y. Liu, and G.D. Prestwich: Effects of extracellular matrix analogues on primary human fibroblast behavior. Acta Biomater. 4, 67 (2008).

    Article  CAS  Google Scholar 

  15. Y.R. Lou, L. Kanninen, T. Kuisma, J. Niklander, L.A. Noon, D. Burks, A. Urtti, and M. Yliperttula: The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev. 23, 380 (2014).

    Article  CAS  Google Scholar 

  16. M. Bhattacharya, M.M. Malinen, P. Lauren, Y.R. Lou, S.W. Kuisma, L. Kanninen, M. Lille, A. Corlu, C. GuGuen-Guillouzo, O. Ikkala, A. Laukkanen, A. Urtti, and M. Yliperttula: Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J. Control Release 164, 291 (2012).

    Article  CAS  Google Scholar 

  17. M.M. Malinen, L.K. Kanninen, A. Corlu, H.M. Isoniemi, Y.R. Lou, M.L. Yliperttula, and A.O. Urtti: Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials 35, 5110 (2014).

    Article  CAS  Google Scholar 

  18. M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, and E. Horwitz: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315 (2006).

    Article  CAS  Google Scholar 

  19. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676 (2012).

    Article  CAS  Google Scholar 

  20. A. Kaus, D. Widera, S. Kassmer, J. Peter, K. Zaenker, C. Kaltschmidt, and B. Kaltschmidt: Neural stem cells adopt tumorigenic properties by constitutively activated NF-kappaB and subsequent VEGF up-regulation. Stem Cells Dev. 19, 999 (2010).

    Article  CAS  Google Scholar 

  21. O.W. Petersen, L. Rønnov-Jessen, A.R. Howlett, and M.J. Bissell: Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 89, 9064 (1992).

    Article  CAS  Google Scholar 

  22. C.M. Yang, Y.J. Huang, and S.H. Hsu: Enhanced autophagy of adipose-derived stem cells grown on chitosan substrates. Biores Open Access 4, 89 (2015).

    Article  CAS  Google Scholar 

  23. H.K. Kleinman and G.R. Martin: Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15, 378 (2005).

    Article  CAS  Google Scholar 

  24. J.R. Paletta, F. Mack, H. Schenderlein, C. Theisen, J. Schmitt, J.H. Wendorff, S. Agarwal, S. Fuchs-Winkelmann, and M.D. Schofer: Incorporation of osteoblasts (MG63) into 3D nanofibre matrices by simultaneous electrospinning and spraying in bone tissue engineering. Eur. Cell Mater. 21, 384 (2011).

    Article  CAS  Google Scholar 

  25. H. Paukkonen, A. Ukkonen, G. Szilvay, M. Yliperttula, and T. Laaksonen: Hydrophobin-nanofibrillated cellulose stabilized emulsions for encapsulation and release of BCS class II drugs. Eur. J. Pharm. Sci. 100, 238 (2017).

    Article  CAS  Google Scholar 

  26. D.J. Modulevsky, C.M. Cuerrier, and A.E. Pelling: Biocompatibility of subcutaneously implanted plant-derived cellulose biomaterials. PLoS ONE 11, e0157894 (2016).

    Article  Google Scholar 

  27. V.R. Lopes, C. Sanchez-Martinez, M. Stromme, and N. Ferraz: In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: surface chemistry aspect. Part. Fibre Toxicol. 14, 1 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

D.W. is supported by a grant of the DFG (German Research Foundation, WI4318/2-1). J.S. is supported by UPM Biochemicals, Helsinki, Finland. S.S.H. is supported by The Scientific and Technological Research Council of Turkey (TUBITAK/SBAG-112S587), Ankara, Turkey and Selcuk University Research Coordination Office (BAP), Konya, Turkey. We thank Professor Erdal Karaoz, Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Istanbul, Turkey for providing human bone marrow MSCs. The sponsors did not participate in study design and data analysis. We thank Amanpreet Kaur for the help with electron microscopy and Marie Zeuner for careful proof-reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darius Widera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azoidis, I., Metcalfe, J., Reynolds, J. et al. Three-dimensional cell culture of human mesenchymal stem cells in nanofibrillar cellulose hydrogels. MRS Communications 7, 458–465 (2017). https://doi.org/10.1557/mrc.2017.59

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.59

Navigation