Skip to main content
Log in

Study of relaxation dynamics of photogenerated excitons in CuInS2 quantum dots

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

CuInS2 (CIS) quantum dots (QDs) with different diameters were prepared and their optical properties were studied. The optical band gap of QDs, as estimated by absorption spectrum, was found to decrease with increase in size. The stokes shift between absorption and photoluminescence peaks was observed to be larger (>100 meV) in all the three samples. This shows that the defect states available in the forbidden gap dominates the recombination mechanism. The variation in the emission peak with QD size, however, indicates that the relaxation dynamics in CIS QDs involves both excitonic level as well as the defect states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Table 1.
Figure 3.
Figure 4.
Table 2.
Figure 5.
Table 3.

Similar content being viewed by others

bl]References

  1. H. Mattoussi, L.H. Radzilowski, B.O. Dabbousi, E.L. Thomas, M.G. Bawendi, and M.F. Rubner: Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals. J. Appl. Phys. 83, 7965 (1998).

    Article  CAS  Google Scholar 

  2. Y. Liu, Y. Li, L. Wang, B. Gu, W. Sang, Y. Gu, and X. Liu: The kinetics of the coordination transformation for preparation of nanosized CdS in a PVA film. J. Macromol. Sci. B 47, 230 (2008).

    Article  CAS  Google Scholar 

  3. M.C. Schlamp, X. Peng, and A.P. Alivisatos: Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 82, 5837 (1997).

    Article  CAS  Google Scholar 

  4. X. Fang, Y. Bando, U.K. Gautam, T. Zhai, S. Gradecak, and D. Golberg: Heterostructures and superlattice in one-dimensional nanoscale semiconductors. J. Mater. Chem. 19, 5683 (2009).

    Article  CAS  Google Scholar 

  5. P.K. Khanna and N. Singh: Light emitting CdS quantum dots in PMMA: synthesis and optical studies. J. Lumin. 127, 474 (2007).

    Article  CAS  Google Scholar 

  6. K.J. Nordell, E.M. Boatman, and G.C. Lisensky: A safer, easier, faster synthesis for CdSe quantum dot nanocrystals. J. Chem. Educ. 82, 1697 (2005).

    Article  Google Scholar 

  7. R. Genger, M. Grabolle, S. Cavaliere Jaricot, R. Nitschke, and T. Nann: Quantum dots versus organic dyes as fluorescence labels. Nat. Methods 5, 763 (2008).

    Article  Google Scholar 

  8. O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong, D.K. Harris, H. Wei, H.S. Han, D. Fukumura, R.K. Jain, and M.G. Bawendi: Compact high quality CdSe–CdS core shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445 (2013).

    Article  CAS  Google Scholar 

  9. S. Madan, J. Kumar, I. Singh, D. Madhwal, P.K. Bhatnagar, and P.C. Mathur: The effect of cadmium vacancies on the optical properties of chemically prepared CdS quantum dots. Phys. Scr. 82, 045702 (2010).

    Article  Google Scholar 

  10. T. Omata, K. Nose, and S. Otsuka-Yao-Matsuo: Size dependent optical band gap of ternary I-III-VI2 semiconductor nanocrystals. J. Appl. Phys. 105, 073106 (2009).

    Article  Google Scholar 

  11. E. Arici, N.S. Sariciftci, and D. Meissner: Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Adv. Funct. Mater. 13, 165 (2003).

    Article  CAS  Google Scholar 

  12. D.C. Pan, X.L. Wang, Z.H. Zhou, W. Chen, C.L. Xu, and Y.F. Lu: Synthesis of quaternary semiconductor nanocrystals with tunable band gaps. Chem. Mater. 21, 2489 (2009).

    Article  CAS  Google Scholar 

  13. P.M. Allen and M.G. Bawendi: Ternary I–III–VI quantum dots luminescent in the red to nearinfrared. J. Am. Chem. Soc. 130, 9240 (2008).

    Article  CAS  Google Scholar 

  14. W.S. Song and H. Yang: Efficient white light emitting diodes fabricated from highly fluorescent copper indium sulfide core/shell quantum dots. Chem. Mater. 24, 1961 (2012).

    Article  CAS  Google Scholar 

  15. H.J. Lewerenz: Development of copper indium disulfide into a solar material. Sol. Energy Mater. Sol. Cells 83, 395 (2004).

    Article  CAS  Google Scholar 

  16. K.M.A. Hussain, J. Podder, D.K. Saha, and M. Ichimura: Structural, electrical and optical characterization of CuInS2 thin films deposited by spray pyrolysis. Ind. J. Pure Appl. Phys. 50, 117 (2012).

    CAS  Google Scholar 

  17. C. Czekelius, M. Hilgendorff, L. Spanhel, I. Bodja, M. Lerch, G. Miller, U. Bloeck, D.S. Su, and M. Giersig: A simple collidal route to nanocrystalline ZnO/CuInS2 bilayers. Adv. Mater. 11, 643 (1999).

    Article  CAS  Google Scholar 

  18. K. Mochizuki, E. Niwa, and K. Masumoto: Effects of heat treatment on the photoluminescence spectra in AgGaS2. J. Lumin. 51, 231 (1992).

    Article  CAS  Google Scholar 

  19. S.C. Pandey and D. Maroudas: Equilibrium compositional distribution in freestanding ternary semiconductor quantum dots: the case of InxGa1−xAs. J. Chem. Phys. 135, 234701 (2011).

    Article  Google Scholar 

  20. D. Nam, W. Seuk, and H. Yang: Facile, air-sensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields. J. Mater. Chem. 21, 18220 (2011).

    Article  CAS  Google Scholar 

  21. T.L. Li and H. Teng: Solution synthesis of high quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes. J. Mater. Chem. 20, 3656 (2010).

    Article  CAS  Google Scholar 

  22. J.J. Nairn, P.J. Shapiro, B. Twamley, T. Pounds, R. vonWandruszka, T.R. Fletcher, M. Williams, C. Wang, and M.G. Norton: Preparation of ultrafast chalcopyrite nanoparticles via the photochemical decomposition of molecular single-source precursors. Nano Lett. 6, 1218 (2006).

    Article  CAS  Google Scholar 

  23. Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya: Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure. J. Phys. Chem. C 115, 1786 (2011).

    Article  CAS  Google Scholar 

  24. L. Li, A. Pandey, D.J. Werder, B.P. Khanal, J.M. Pietryga, and V.I. Klimov: Efficient synthesis of highly luminescent copper indium sulfide based core/shell nanocrystals with surprisingly long lived emission. J. Am. Chem. Soc. 133, 1176 (2011).

    Article  CAS  Google Scholar 

  25. S.P. Mondal, H. Mulick, T. Layanya, A. Dhar, S.K. Ray, and S.K. Lahiri: Optical and dielectric properties of junctionlike CdS nanocomposites embedded in polymer matrix. J. Appl. Phys. 102, 064305 (2007).

    Article  Google Scholar 

  26. J. Barman, K.C. Sarma, M. Sarma, and K. Sarma: Structural and optical studies of chemically prepared CdS nanocrytalline thinfilms. Ind. J. Pure Appl. Phys. 46, 339 (2008).

    CAS  Google Scholar 

  27. C.B. Murray, D.J. Norris, and M.G. Bawendi: Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706 (1993).

    Article  CAS  Google Scholar 

  28. D.G. Thomas, J.J. Hopfield, and W.M. Augustyniak: Kinetics of radiative recombination at randomly distributed donors and acceptors. Phys. Rev. 140, A202 (1965).

    Article  Google Scholar 

  29. N. Satoh, K. Abe, K. Wakita, and K. Mochizuki: Growth of CuInS2 crystal from melt and their properties. Phys. Status Solidi 3, 2630 (2006).

    CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the Department of Science and Technology, India is gratefully acknowledged. The authors also acknowledge the University Science Instrumentation Centre, University of Delhi, India for TEM and EDAX measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inderpreet Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, I., Madan, S., Kaur, A. et al. Study of relaxation dynamics of photogenerated excitons in CuInS2 quantum dots. MRS Communications 4, 1–5 (2014). https://doi.org/10.1557/mrc.2014.5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2014.5

Navigation