Skip to main content
Log in

Elucidating the kinetics of twin boundaries from thermal fluctuations

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

There is compelling evidence for the critical role of twin boundaries (TBs) in imparting the extraordinary combination of strength and ductility to nanotwinned metals. Here, we investigate the thermal fluctuations of TBs in face-centered-cubic metals to elucidate the deformation mechanisms governing their kinetic properties using molecular dynamics simulations. Our results show that the TB motion is strongly coupled to shear deformation up to 0.95 homologous temperature. A rather unexpected observation is that coherent TBs do not exhibit any capillarityinduced fluctuations even at high temperatures, in sharp contrast to other high-angle grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4

Similar content being viewed by others

References

  1. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004).

    Article  CAS  Google Scholar 

  2. A.M. Hodge, Y.M. Wang, and T.W. Barbee Jr.: Mechanical deformation of high-purity sputter-deposited nano-twinned copper. Scr. Mater. 59, 163 (2008).

    Article  CAS  Google Scholar 

  3. D. Jang, X. Li, H. Gao, and J.R. Greer: Deformation mechanisms in nanotwinned metal nanopillars. Nature Nanotech. 7, 594 (2012).

    Article  CAS  Google Scholar 

  4. A.J. Cao, Y.G. Wei, and X.S. Mao: Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries. Appl. Phys. Lett. 90, 151909 (2007).

    Article  Google Scholar 

  5. R.J. Asaro and Y. Kulkarni: Are rate sensitivity and strength effected by cross-slip in nano-twinned FCC metals. Scr. Mater. 58, 389 (2008).

    Article  CAS  Google Scholar 

  6. T. Zhu, J. Li, A. Samanta, H.G. Kim, and S. Suresh: Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl. Acad. Sci. USA 104 (2007).

  7. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hossan, and E. Ma Li: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).

    Article  CAS  Google Scholar 

  8. D. Wolf, V. Yamakov, S.R. Phillpot, A. Mukherjee, and H. Gleiter: Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater. 53, 1 (2005).

    Article  CAS  Google Scholar 

  9. K. Zhang, J.R. Weertman, and J.A. Eastman: Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl. Phys. Lett. 87, 061921 (2005).

    Article  Google Scholar 

  10. F. Sansoz and V. Dupont: Grain growth behavior at absolute zero during nanocrystalline metal indentation. Appl. Phys. Lett. 89, 111901 (2006).

    Article  Google Scholar 

  11. X. Li, Y. Wei, W. Yang, and H. Gao: Competing grain boundary and dislocation mediated mechanisms in plastic strain recovery in nanocrystalline aluminum. Proc. Natl. Acad. Sci. USA 106, 16108 (2009).

    Article  CAS  Google Scholar 

  12. C.J. Shute, B.D. Myers, S. Xie, T.W. Barbee Jr., A.M. Hodge, and J.R. Weertman: Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins. Scr. Mater. 60, 1073 (2011).

    Article  Google Scholar 

  13. C.J. Bezares, S. Jiao, Y. Liuc, D. Bufford, L. Lu, X. Zhang, Y. Kulkarni, and R.J. Asaro: Indentation of Nano-Twinned FCC Metals: Implications for Nano-Twin Stability. Acta Mater. 60, 4623 (2012).

    Article  CAS  Google Scholar 

  14. S.A. Safran: Statistical Thermodynamics of Surfaces, Interface, and Membranes (Westview Press, Colorado, USA, 2003).

    Google Scholar 

  15. J.J. Hoyt, Z.T. Trautt, and M. Upmanyu: Fluctuation in molecular dynamics simulation. Math. Comput. Simul. 80, 1382 (2010).

    Article  Google Scholar 

  16. A. Karma, Z.T. Trautt, and Y. Mishin: Relationship between equilibrium fluctuations and shear-coupled motion of grain boundaries. Phys. Rev. Lett. 109, 095501 (2012).

    Article  Google Scholar 

  17. S.J. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  18. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress: Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded atom calculations. Phys. Rev. B 63, 224106 (2001).

    Article  Google Scholar 

  19. J.J. Hoty, M. Asta, A. Karma: Method for computing the anisotropy of the solid- liquid interfacial free energy. Phys. Rev. Lett. 86, 5530 (2001).

    Article  Google Scholar 

  20. Z.T. Trautt and M. Upmanyu: Direct two-dimensional calculations of grain boundary stiffness. Scr. Mater. 86, 5530 (2001).

    Google Scholar 

  21. S.M. Foiles and J.J. Hoyt: Computation of grain boundary stiffness and mobility from boundary fluctuations. Acta Mater. 54, 3351 (2006).

    Article  CAS  Google Scholar 

  22. J.J. Hoyt, Z.T. Trautt, and M. Upmanyu: Interface mobility from interface random walk. Science 314, 632 (2006).

    Article  Google Scholar 

  23. C. Rottman: Thermal fluctuation in low-angle grain boundary. Acta Metall. 34, 2465 (1986).

    Article  Google Scholar 

  24. J.W. Cahn, Y. Mishin, and A. Suzuki: Coupling grain boundary motion to shear deformation. Acta Mater. 54, 4953 (2006).

    Article  CAS  Google Scholar 

  25. T. Sinha and Y. Kulkarni: Anomalous deformation twinning in fcc metals at high temperatures. J. Appl. Phys. 109, 114315 (2011).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the support of the US National Science Foundation under grants DMR-1006876 and CMMI-1129041 and the Defense Advanced Research Projects Agency under grant N66001-10-1-4033. Yashashree Kulkarni would like to thank Professor Pradeep Sharma, University of Houston, for stimulating discussions. The simulations were performed on the supercomputing facility hosted by the Research Computing Center at University of Houston.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashashree Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Kulkarni, Y. Elucidating the kinetics of twin boundaries from thermal fluctuations. MRS Communications 3, 241–244 (2013). https://doi.org/10.1557/mrc.2013.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.37

Navigation