Skip to main content
Log in

Catalytic polymeric nanoreactors: more than a solid supported catalyst

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Polymeric nanostructures can be synthesized where the catalytic motif is covalently attached within the core domain and protected from the environment by a polymeric shell. Such nanoreactors can be easily recycled, and have shown unique properties when catalyzing reactions under pseudohomogeneous conditions. Many examples of how these catalytic nanostructures can act as nanosized reaction vessels have been reported in the literature. This prospective will focus on the exclusive features observed for these catalytic systems and highlight their potential as enzyme mimics, as well as the importance of further studies to unveil their full potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. R.B. Merrifield: Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149 (1963).

    CAS  Google Scholar 

  2. N. Madhavan, C.W. Jones, and M. Weck: Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design. Acc. Chem. Res. 41, 1153 (2008).

    CAS  Google Scholar 

  3. B. Clapham, T.S. Reger, and K.D. Janda: Polymer-supported catalysis in synthetic organic chemistry. Tetrahedron 57, 4637 (2001).

    CAS  Google Scholar 

  4. P. Hodge: Polymer-supported organic reactions: what takes place in the beads? Chem. Soc. Rev. 26, 417 (1997).

    CAS  Google Scholar 

  5. D.C. Sherrington: Polymer-supported reagents, catalysts, and sorbents: evolution and exploitation - A personalized view. J. Polym. Sci., Part A: Polym. Chem. 39, 2364 (2001).

    CAS  Google Scholar 

  6. O. Nuyken, P. Persigehl, and R. Weberskirch: Amphiphilic poly(oxazoline)s - synthesis and application for micellar catalysis. Macromol. Symp. 177, 163 (2002).

    CAS  Google Scholar 

  7. B.P. Mason, S.M. Hira, G.F. Strouse, and D.T. McQuade: Microcapsules with three orthogonal reactive sites. Org. Lett. 11, 1479 (2009).

    CAS  Google Scholar 

  8. Y.G. Chi, S.T. Scroggins, and J.M.J. Frechet: One-pot multi-component asymmetric cascade reactions catalyzed by soluble star polymers with highly branched non-interpenetrating catalytic cores. J. Am. Chem. Soc. 130, 6322 (2008).

    CAS  Google Scholar 

  9. S. Perrier and P. Takolpuckdee: Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. J. Polym. Sci., Part A: Polym. Chem. 43, 5347 (2005).

    CAS  Google Scholar 

  10. K. Matyjaszewski and J.H. Xia: Atom transfer radical polymerization. Chem. Rev. 101, 2921 (2001).

    CAS  Google Scholar 

  11. D. Benoit, V. Chaplinski, R. Braslau, and C.J. Hawker: Development of a universal alkoxyamine for “living” free radical polymerizations. J. Am. Chem. Soc. 121, 3904 (1999).

    CAS  Google Scholar 

  12. M. Szwarc: “Living” polymers. Nature 178, 1168 (1956).

    CAS  Google Scholar 

  13. K.B. Thurmond, T. Kowalewski, and K.L. Wooley: Water-soluble knedel-like structures: the preparation of shell-cross-linked small particles. J. Am. Chem. Soc. 118, 7239 (1996).

    CAS  Google Scholar 

  14. K. Matyjaszewski and N.V. Tsarevsky: Nanostructured functional materials prepared by atom transfer radical polymerization. Nature Chem. 1, 276 (2009).

    CAS  Google Scholar 

  15. A. Gregory and M.H. Stenzel: Complex polymer architectures via RAFT polymerization: from fundamental process to extending the scope using click chemistry and nature’s building blocks. Prog. Polym. Sci. 37, 38 (2012).

    CAS  Google Scholar 

  16. A.W. Bosman, R. Vestberg, A. Heumann, J.M.J. Fréchet, and C.J. Hawker: A modular approach toward functionalized three-dimensional macromolecules: from synthetic concepts to practical applications. J. Am. Chem. Soc. 125, 715 (2002).

    Google Scholar 

  17. C.J. Hawker: “Living” free radical polymerization: a unique technique for the preparation of controlled macromolecular architectures. Acc. Chem. Res. 30, 373 (1997).

    CAS  Google Scholar 

  18. J.S. Wang and K. Matyjaszewski: Controlled living radical polymerization - halogen atom-transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 28, 7901 (1995).

    CAS  Google Scholar 

  19. C.J. Hawker, G.G. Barclay, A. Orellana, J. Dao, and W. Devonport: Initiating systems for nitroxide-mediated “living” free radical polymerizations: synthesis and evaluation. Macromolecules 29, 5245 (1996).

    CAS  Google Scholar 

  20. J. Chiefari, Y.K. Chong, F. Ercole, J. Krstina, J. Jeffery, T.P.T. Le, R.T.A. Mayadunne, G.F. Meijs, C.L. Moad, G. Moad, E. Rizzardo, and S.H. Thang: Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31, 5559 (1998).

    CAS  Google Scholar 

  21. W.A. Braunecker and K. Matyjaszewski: Controlled/living radical polymerization: features, developments, and perspectives. Prog. Polym. Sci. 32, 93 (2007).

    CAS  Google Scholar 

  22. R.A. Sheldon: Green solvents for sustainable organic synthesis: state of the art. Green Chem. 7, 267 (2005).

    CAS  Google Scholar 

  23. M. Gruttadauria, F. Giacalone, and R. Noto: Water in stereoselective organocatalytic reactions. Adv. Synth. Catal. 351, 33 (2009).

    CAS  Google Scholar 

  24. D.M. Vriezema, M.C. Aragones, J.A.A.W. Elemans, J.J.L.M. Cornelissen, A.E. Rowan, and R.J.M. Nolte: Self-assembled nanoreactors. Chem. Rev. 105, 1445 (2005).

    CAS  Google Scholar 

  25. B. Helms and J.M.J. Fréchet: The dendrimer effect in homogeneous catalysis. Adv. Synth. Catal. 348, 1125 (2006).

    CAS  Google Scholar 

  26. R. McHale, J.P. Patterson, P.B. Zetterlund, and R.K. O’Reilly: Biomimetic radical polymerization via cooperative assembly of segregating templates. Nature Chem. 4, 491 (2012).

    CAS  Google Scholar 

  27. P. Cotanda and R.K. O’Reilly: Molecular recognition driven catalysis using polymeric nanoreactors. Chem. Commun. 48, 10280–10282 (2012). DOI:10.1039/C2CC35655D

    CAS  Google Scholar 

  28. A. Lu, P. Cotanda, J.P. Patterson, D.A. Longbottom, and R.K. O’Reilly: Aldol reactions catalyzed by l-proline functionalized polymeric nanoreactors in water. Chem. Commun. 48, 9699 (2012).

    CAS  Google Scholar 

  29. S. Arumugam, D.R. Vutukuri, S. Thayumanavan, and V. Ramamurthy: Amphiphilic homopolymer as a reaction medium in water: product selectivity within polymeric nanopockets. J. Am. Chem. Soc. 127, 13200 (2005).

    CAS  Google Scholar 

  30. Y. Liu, Y. Wang, Y. Wang, J. Lu, V. Piñón, and M. Weck: Shell cross-linked micelle-based nanoreactors for the substrate-selective hydrolytic kinetic resolution of epoxides. J. Am. Chem. Soc. 133, 14260 (2011).

    CAS  Google Scholar 

  31. P. Cotanda, A. Lu, J.P. Patterson, N. Petzetakis, and R.K. O’Reilly: Functionalized organocatalytic nanoreactors: hydrophobic pockets for acylation reactions in water. Macromolecules 45, 2377 (2012).

    CAS  Google Scholar 

  32. K.L. Wooley: Shell crosslinked polymer assemblies: nanoscale constructs inspired from biological systems. J. Polym. Sci., Part A: Polym. Chem. 38, 1397 (2000).

    CAS  Google Scholar 

  33. T. Nicolai, O. Colombani, and C. Chassenieux: Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter 6, 3111 (2010).

    CAS  Google Scholar 

  34. B. Gall, M. Bortenschlager, O. Nuyken, and R. Weberskirch: Cascade reactions in polymeric nanoreactors: mono (Rh)- and bimetallic (Rh/Ir) micellar catalysis in the hydroaminomethylation of 1-octene. Macromol. Chem. Phys. 209, 1152 (2008).

    CAS  Google Scholar 

  35. P. Persigehl, R. Jordan, and O. Nuyken: Functionalization of amphiphilic poly(2-oxazoline) block copolymers: a novel class of macroligands for micellar catalysis. Macromolecules 33, 6977 (2000).

    CAS  Google Scholar 

  36. M.T. Zarka, O. Nuyken, and R. Weberskirch: Amphiphilic polymer supports for the asymmetric hydrogenation of amino acid precursors in water. Chem. Eur. J. 9, 3228 (2003).

    CAS  Google Scholar 

  37. A.D. Ievins, X.F. Wang, A.O. Moughton, J. Skey, and R.K. O’Reilly: Synthesis of core functionalized polymer micelles and shell cross-linked nanoparticles. Macromolecules 41, 2998 (2008).

    CAS  Google Scholar 

  38. B.M. Rossbach, K. Leopold, and R. Weberskirch: Self-assembled nanoreactors as highly active catalysts in the hydrolytic kinetic resolution (HKR) of epoxides in water. Angew. Chem., Int. Ed. 45, 1309 (2006).

    CAS  Google Scholar 

  39. Z.S. Ge, D. Xie, D. Chen, X. Jiang, Y. Zhang, H. Liu, and S. Liu: Stimuli-responsive double hydrophilic block copolymer micelles with switchable catalytic activity. Macromolecules 40, 3538 (2007).

    CAS  Google Scholar 

  40. T.G. O’Lenick, X. Jiang, and B. Zhao: Catalytic activity of a thermosensitive hydrophilic diblock copolymer-supported 4-N,N-dialkylaminopyridine in hydrolysis of p-nitrophenyl acetate in aqueous buffers. Polymer 50, 4363 (2009).

    Google Scholar 

  41. A. Lu, T.P. Smart, T.H. Epps, D.A. Longbottom, and R.K. O’Reilly: l-proline functionalized polymers prepared by RAFT polymerization and their assemblies as supported organocatalysts. Macromolecules 44, 7233 (2011).

    CAS  Google Scholar 

  42. Y. Wang, G.W. Wei, W.Q. Zhang, X.W. Jiang, P.W. Zheng, L.Q. Shi, and A.J. Dong: Responsive catalysis of thermoresponsive micelle-supported gold nanoparticles. J. Mol. Catal. A: Chem. 266, 233 (2007).

    CAS  Google Scholar 

  43. R.K. O’Reilly, C.J. Hawker, and K.L. Wooley: Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem. Soc. Rev. 35, 1068 (2006).

    Google Scholar 

  44. X. Yan, G. Liu, F. Liu, B.Z. Tang, H. Peng, A.B. Pakhomov, and C.Y. Wong: Superparamagnetic triblock copolymer/Fe2O3 hybrid nanofibers. Angew. Chem., Int. Ed. 40, 3593 (2001).

    CAS  Google Scholar 

  45. Y. Liu, V. Pinon, and M. Weck: Poly(norbornene) block copolymer-based shell cross-linked micelles with Co(iii)-salen cores. Polym. Chem. 2, 1964 (2011).

    CAS  Google Scholar 

  46. S.J. Broadwater, S.L. Roth, K.E. Price, M. Kobaslija, and D.T. McQuade: One-pot multi-step synthesis: a challenge spawning innovation. Org. Bio. Chem. 3, 2899 (2005).

    CAS  Google Scholar 

  47. L.F. Tietze: Domino reactions in organic synthesis. Chem. Rev. 96, 115 (1996).

    CAS  Google Scholar 

  48. B.J. Cohen, M.A. Kraus, and A. Patchornik: Wolf and lamb reactions - equilibrium and kinetic effects in multipolymer systems. J. Am. Chem. Soc. 103, 7620 (1981).

    CAS  Google Scholar 

  49. H. Gao: Development of star polymers as unimolecular containers for nanomaterials. Macromol. Rapid Commun. 33, 722 (2012).

    CAS  Google Scholar 

  50. B. Helms, S.J. Guillaudeu, Y. Xie, M. McMurdo, C.J. Hawker, and J.M.J. Frechet: One-pot reaction cascades using star polymers with core-confined catalysts. Angew. Chem., Int. Ed. 44, 6384 (2005).

    CAS  Google Scholar 

  51. K.-Y. Baek, M. Kamigaito, and M. Sawamoto: Core-functionalized star polymers by transition metal-catalyzed living radical polymerization. 2. Selective interaction with protic guests via core functionalities 1. Macromolecules 35, 1493 (2002).

    CAS  Google Scholar 

  52. T. Terashima, M. Kamigaito, K.-Y. Baek, T. Ando, and M. Sawamoto: Polymer catalysts from polymerization catalysts: direct encapsulation of metal catalyst into star polymer core during metal-catalyzed living radical polymerization. J. Am. Chem. Soc. 125, 5288 (2003).

    CAS  Google Scholar 

  53. T. Terashima, M. Ouchi, T. Ando, and M. Sawamoto: Thermoregulated phase-transfer catalysis via PEG-armed Ru(II)-bearing microgel core star polymers: efficient and reusable Ru(II) catalysts for aqueous transfer hydrogenation of ketones. J. Polym. Sci., Part A: Polym. Chem. 48, 373 (2010).

    CAS  Google Scholar 

  54. T. Terashima, A. Nomura, M. Ito, M. Ouchi, and M. Sawamoto: Star-polymer-catalyzed living radical polymerization: microgel-core reaction vessel by tandem catalyst interchange. Angew. Chem., Int. Ed. 50, 7892 (2011).

    CAS  Google Scholar 

Download references

Acknowledgment

The EPSRC and AWE are thanked for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel K. O’Reilly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotanda, P., Petzetakis, N. & O’Reilly, R.K. Catalytic polymeric nanoreactors: more than a solid supported catalyst. MRS Communications 2, 119–126 (2012). https://doi.org/10.1557/mrc.2012.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2012.26

Navigation