Skip to main content

Advertisement

Log in

Spectroscopic imaging in piezoresponse force microscopy: New opportunities for studying polarization dynamics in ferroelectrics and multiferroics

  • Prospectives Articles
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Piezoresponse force microscopy (PFM) has emerged as a powerful tool to characterize piezoelectric, ferroelectric, and multiferroic materials on the nanometer level. Much of the driving force for the broad adoption of PFM has been the intense research into piezoelectric properties of thin films, nanoparticles, and nanowires of materials as dissimilar as perovskites, nitrides, and polymers. Recent recognition of limitations of single-frequency PFM, notably topography-related cross-talk, has led to development of novel solutions such band-excitation (BE) methods. In parallel, the need for quantitative probing of polarization dynamics has led to emergence of complex time- and voltage spectroscopies, often based on acquisition and analysis of multidimensional datasets. In this perspective, we discuss the recent developments in multidimensional PFM, and offer several examples of spectroscopic techniques that provide new insight into polarization dynamics in ferroelectrics and multiferroics. We further discuss potential extension of PFM for probing ionic phenomena in energy generation and storage materials and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Table 1.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  1. J.F. Scott and C.A. Paz de Araujo: Ferroelectric memories. Science 246, 1400 (1989).

    Article  CAS  Google Scholar 

  2. Y. Zheng, G.-X. Ni, C.-T. Toh, M.-G. Zeng, S.-T. Chen, K. Yao, and B. Ozyilmaz: Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett. 94, 163505 (2009).

    Article  CAS  Google Scholar 

  3. W. Fu, Z. Xu, X. Bai, C. Gu, and E. Wang: Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor. Nano Lett. 9, 921 (2009).

    Article  CAS  Google Scholar 

  4. S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto: Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276, 238 (1997).

    Article  CAS  Google Scholar 

  5. P. Maksymovych, S. Jesse, P. Yu, R. Ramesh, A.P. Baddorf, and S.V. Kalinin: Polarization control of electron tunneling into ferroelectric surfaces. Science 324, 1421 (2009).

    Article  CAS  Google Scholar 

  6. V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N.D. Mathur, A. Barthelemy, and M. Bibes: Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81 (2009).

    Article  CAS  Google Scholar 

  7. D.L. Polla: Microelectromechanical systems based on ferroelectric thin films. Microelectron. Eng. 29, 51 (1995).

    Article  CAS  Google Scholar 

  8. M.A. Karami and D.J. Inman: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100, 042901 (2012).

    Article  CAS  Google Scholar 

  9. S. Gael, P. Sebastien, and G. Daniel: Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic. Smart Mater. Struct. 17, 015012 (2008).

    Article  CAS  Google Scholar 

  10. J.J. Bernstein, S.L. Finberg, K. Houston, L.C. Niles, H.D. Chen, L.E. Cross, K.K. Li, and K. Udayakumar: Micromachined high frequency ferroelectric sonar transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 960 (1997).

    Article  Google Scholar 

  11. F.S. Foster, K.A. Harasiewicz, and M.D. Sherar: A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1363 (2000).

    Article  CAS  Google Scholar 

  12. A. Pramanick, D. Damjanovic, J.E. Daniels, J.C. Nino, and J.L. Jones: Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading. J. Am. Ceram. Soc. 94, 293 (2011).

    Article  CAS  Google Scholar 

  13. T. Sluka, A.K. Tagantsev, D. Damjanovic, M. Gureev, and N. Setter: Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nat. Comm. 3, 748 (2012).

    Article  CAS  Google Scholar 

  14. N. Bassiri-Gharb, I. Fujii, E. Hong, S. Trolier-McKinstry, D. Taylor, and D. Damjanovic: Domain wall contributions to the properties of piezoelectric thin films. J. Electroceram. 19, 49 (2007).

    Article  CAS  Google Scholar 

  15. F. Xu, S. Trolier-McKinstry, W. Ren, B. Xu, Z.L. Xie, and K.J. Hemker: Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J. Appl. Phys. 89, 1336 (2001).

    Article  CAS  Google Scholar 

  16. N.A. Pertsev and A.Y. Emelyanov: Domain-wall contribution to the piezoelectric response of epitaxial ferroelectric thin films. Appl. Phys. Lett. 71, 3646 (1997).

    Article  CAS  Google Scholar 

  17. M. Avrami: Kinetics of phase change. I Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212 (1940).

    Article  CAS  Google Scholar 

  18. Y. Ishibashi and Y. Takagi: Note on ferroelectric domain switching. J. Phys. Soc. Jpn. 31, 506 (1971).

    Article  CAS  Google Scholar 

  19. Y.W. So, D.J. Kim, T.W. Noh, J.-G. Yoon, and T.K. Song: Polarization switching kinetics of epitaxial Pb(Zr0.4Ti0.6)O3 thin films. Appl. Phys. Lett. 86, 092905 (2005).

    Article  CAS  Google Scholar 

  20. A.K. Tagantsev, I. Stolichnov, N. Setter, J.S. Cross, and M. Tsukada: Non-Kolmogorov–Avrami switching kinetics in ferroelectric thin films. Phys. Rev. B 66, 214109 (2002).

    Article  CAS  Google Scholar 

  21. A. Wu, P.M. Vilarinho, D. Wu, and A. Gruverman: Abnormal domain switching in Pb(Zr,Ti)O3 thin film capacitors. Appl. Phys. Lett. 93, 262906 (2008).

    Article  CAS  Google Scholar 

  22. T.J. Yang, V. Gopalan, P.J. Swart, and U. Mohideen: Direct observation of pinning and bowing of a single ferroelectric domain wall. Phys. Rev. Lett. 82, 4106 (1999).

    Article  CAS  Google Scholar 

  23. A. Agronin, Y. Rosenwaks, and G. Rosenman: Direct observation of pinning centers in ferroelectrics. Appl. Phys. Lett. 88, 072911 (2006).

    Article  CAS  Google Scholar 

  24. S. Nambu and D.A. Sagala: Domain formation and elastic longrange interaction in ferroelectric perovskites. Phys. Rev. B 50, 5838 (1994).

    Article  CAS  Google Scholar 

  25. L. Rayleigh: XXV. Notes on electricity and magnetism–III. On the behaviour of iron and steel under the operation of feeble magnetic forces. Philos. Mag. Ser. 5 23, 225 (1887).

    Article  Google Scholar 

  26. T. Tybell, P. Paruch, T. Giamarchi, and J.-M. Triscone: Domain wall creep in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 89, 097601 (2002).

    Article  CAS  Google Scholar 

  27. P. Paruch, T. Giamarchi, and J.M. Triscone: Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 94, 197601 (2005).

    Article  CAS  Google Scholar 

  28. D.J. Kim, J.Y. Jo, T.H. Kim, S.M. Yang, B. Chen, Y.S. Kim, and T.W. Noh: Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti) O3 capacitors. Appl. Phys. Lett. 91, 132903 (2007).

    Article  CAS  Google Scholar 

  29. T. Giamarchi, A.B. Kolton, and A. Rosso: Dynamics of disordered elastic systems, In Jamming, Yielding, and Irreversible Deformation in Condensed Matter, edited by M.C. Miguel and J.M. Rubí (Springer Verlag, Berlin and Heidelberg, Germany, 2006), pp. 91–108.

    Chapter  Google Scholar 

  30. A.S. Keys, A.R. Abate, S.C. Glotzer, and D.J. Durian: Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material. Nat. Phys. 3, 260 (2007).

    Article  CAS  Google Scholar 

  31. O. Guillon, F. Thiebaud, and D. Perreux: Tensile fracture of soft and hard PZT. Int. J. Fract. 117, 235 (2002).

    Article  CAS  Google Scholar 

  32. D. Damjanovic: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267 (1998).

    Article  CAS  Google Scholar 

  33. A. Gruverman, O. Auciello, and H. Tokumoto: Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu. Rev. Mater. Sci. 28, 101 (1998).

    Article  CAS  Google Scholar 

  34. S.V. Kalinin, A.N. Morozovska, L.-Q. Chen, and B.J. Rodriguez: Local polarization dynamics in ferroelectric materials. Rep. Prog. Phys. 73, 056502 (2010).

    Article  CAS  Google Scholar 

  35. M. Abplanalp, L.M. Eng, and P. Günter: Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy. Appl. Phys. A Mater. Sci. Process. 66, S231 (1998).

    Article  CAS  Google Scholar 

  36. A. Gruverman, D. Wu, H.J. Fan, I. Vrejoiu, M. Alexe, R.J. Harrison, and J.F. Scott: Vortex ferroelectric domains. J. Phys.: Condens. Matter 20, 342201 (2008).

    Google Scholar 

  37. C.S. Ganpule, V. Nagarajan, B.K. Hill, A.L. Roytburd, E.D. Williams, R. Ramesh, S.P. Alpay, A. Roelofs, R. Waser, and L.M. Eng: Imaging three-dimensional polarization in epitaxial polydomain ferroelectric thin films. J. Appl. Phys. 91, 1477 (2002).

    Article  CAS  Google Scholar 

  38. V.V. Shvartsman, A.L. Kholkin, A. Orlova, D. Kiselev, A.A. Bogomolov, and A. Sternberg: Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics. Appl. Phys. Lett. 86, 202907 (2005).

    Article  CAS  Google Scholar 

  39. J. Desmarais, J.F. Ihlefeld, T. Heeg, J. Schubert, D.G. Schlom, and B.D. Huey: Mapping and statistics of ferroelectric domain boundary angles and types. Appl. Phys. Lett. 99, 162902 (2011).

    Article  CAS  Google Scholar 

  40. G. Catalan, H. Bea, S. Fusil, M. Bibes, P. Paruch, A. Barthelemy, and J.F. Scott: Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3. Phys. Rev. Lett. 100, 027602 (2008).

    Article  CAS  Google Scholar 

  41. G. Catalan and J.F. Scott: Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009).

    Article  CAS  Google Scholar 

  42. J. Seidel, L.W. Martin, Q. He, Q. Zhan, Y.H. Chu, A. Rother, M.E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S.V. Kalinin, S. Gemming, F. Wang, G. Catalan, J.F. Scott, N.A. Spaldin, J. Orenstein, and R. Ramesh: Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229 (2009).

    Article  CAS  Google Scholar 

  43. V. Nagarajan, A. Roytburd, A. Stanishevsky, S. Prasertchoung, T. Zhao, L. Chen, J. Melngailis, O. Auciello, and R. Ramesh: Dynamics of ferroelastic domains in ferroelectric thin films. Nat. Mater. 2, 43 (2003).

    Article  CAS  Google Scholar 

  44. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).

    Article  CAS  Google Scholar 

  45. L.W. Martin, Y.-H. Chu, M.B. Holcomb, M. Huijben, P. Yu, S.-J. Han, D. Lee, S.X. Wang, and R. Ramesh: Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 8, 2050 (2008).

    Article  CAS  Google Scholar 

  46. G. Catalan, J. Seidel, R. Ramesh, and J.F. Scott: Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012).

    Article  CAS  Google Scholar 

  47. E.K.H. Salje: Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. ChemPhysChem 11, 940 (2010).

    Article  CAS  Google Scholar 

  48. P. Sharma, T.J. Reece, S. Ducharme, and A. Gruverman: High-resolution studies of domain switching behavior in nanostructured ferroelectric polymers. Nano Lett. 11, 1970 (2011).

    Article  CAS  Google Scholar 

  49. S.S. Nonnenmann, O.D. Leaffer, E.M. Gallo, M.T. Coster, and J.E. Spanier: Finite curvature-mediated ferroelectricity. Nano Lett. 10, 542 (2010).

    Article  CAS  Google Scholar 

  50. B.J. Rodriguez, S. Jesse, M. Alexe, and S.V. Kalinin: Spatially resolved mapping of polarization switching behavior in nanoscale ferroelectrics. Adv. Mater. 20, 109 (2008).

    Article  CAS  Google Scholar 

  51. B.J. Rodriguez, X.S. Gao, L.F. Liu, W. Lee, I.I. Naumov, A.M. Bratkovsky, D. Hesse, and M. Alexe: Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9, 1127 (2009).

    Article  CAS  Google Scholar 

  52. A. Kikukawa, S. Hosaka, and R. Imura: Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy. Appl. Phys. Lett. 66, 3510 (1995).

    Article  CAS  Google Scholar 

  53. M. Nonnenmacher, M. Oboyle, and H. Wickramasinghe: Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921 (1991).

    Article  Google Scholar 

  54. M. Nonnenmacher and H. Wickramasinghe: Scanning probe microscopy of thermal conductivity and subsurface properties. Appl. Phys. Lett. 61, 168 (1992).

    Article  CAS  Google Scholar 

  55. Y. Kim, C. Bae, K. Ryu, H. Ko, Y.K. Kim, S. Hong, and H. Shin: Origin of surface potential change during ferroelectric switching in epitaxial PbTiO3 thin films studied by scanning force microscopy. Appl. Phys. Lett. 94, 032907 (2009).

    Article  CAS  Google Scholar 

  56. N. Balke, B. Winchester, W. Ren, Y.H. Chu, A.N. Morozovska, E.A. Eliseev, M. Huijben, R.K. Vasudevan, P. Maksymovych, J. Britson, S. Jesse, I. Kornev, R. Ramesh, L. Bellaiche, L.Q. Chen, and S.V. Kalinin: Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat. Phys. 8, 81 (2012).

    Article  CAS  Google Scholar 

  57. X. Liu, K. Terabe, M. Nakamura, S. Takekawa, and K. Kitamura: Nanoscale chemical etching of near-stoichiometric lithium tantalate. J. Appl. Phys. 97, 064308 (2005).

    Article  CAS  Google Scholar 

  58. S. Dunn, D. Tiwari, P.M. Jones, and D.E. Gallardo: Insights into the relationship between inherent materials properties of PZT and photochemistry for the development of nanostructured silver. J. Mater. Chem. 17, 4460 (2007).

    Article  CAS  Google Scholar 

  59. J.N. Hanson, B.J. Rodriguez, R.J. Nemanich, and A. Gruverman: Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction. Nanotechnology 17, 4946 (2006).

    Article  CAS  Google Scholar 

  60. S.V. Kalinin, D.A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J.H. Ferris, Q. Zhang, and S. Dunn: Atomic polarization and local reactivity on ferroelectric surfaces: a new route toward complex nanostructures. Nano Lett. 2, 589 (2002).

    Article  CAS  Google Scholar 

  61. S.V. Kalinin, D.A. Bonnell, T. Alvarez, X. Lei, Z. Hu, R. Shao, and J.H. Ferris: Ferroelectric lithography of multicomponent nanostructures. Adv. Mater. 16, 795 (2004).

    Article  CAS  Google Scholar 

  62. J.H. Ferris, D.B. Li, S.V. Kalinin, and D.A. Bonnell: Nanoscale domain patterning of lead zirconate titanate materials using electron beams. Appl. Phys. Lett. 84, 774 (2004).

    Article  CAS  Google Scholar 

  63. A. Roelofs, U. Bottger, R. Waser, F. Schlaphof, S. Trogisch, and L.M. Eng: Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy. Appl. Phys. Lett. 77, 3444 (2000).

    Article  CAS  Google Scholar 

  64. A. Gruverman, B.J. Rodriguez, C. Dehoff, J.D. Waldrep, A.I. Kingon, R.J. Nemanich, and J.S. Cross: Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl. Phys. Lett. 87, 082902 (2005).

    Article  CAS  Google Scholar 

  65. B.J. Rodriguez, S. Jesse, A.P. Baddorf, and S.V. Kalinin: High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy. Phys. Rev. Lett. 96, 237602 (2006).

    Article  CAS  Google Scholar 

  66. N. Balke, M. Gajek, A.K. Tagantsev, L.W. Martin, Y.-H. Chu, R. Ramesh, and S.V. Kalinin: Direct observation of capacitor switching using planar electrodes. Adv. Funct. Mater. 20, 3466 (2010).

    Article  CAS  Google Scholar 

  67. L. You, E. Liang, R. Guo, D. Wu, K. Yao, L. Chen, and J. Wang: Polarization switching in quasiplanar BiFeO3 capacitors. Appl. Phys. Lett. 97, 062910 (2010).

    Article  CAS  Google Scholar 

  68. A. Gruverman and S.V. Kalinin: Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. J. Mater. Sci. 41, 107 (2006).

    Article  CAS  Google Scholar 

  69. S.V. Kalinin, A. Rar, and S. Jesse: A decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 2226 (2006).

    Article  Google Scholar 

  70. S. Elisabeth: Piezoresponse force microscopy (PFM). J. Phys. D: Appl. Phys. 44, 464003 (2011).

    Article  CAS  Google Scholar 

  71. A. Kholkin, S. Kalinin, A. Roelofs, and A. Gruverman: Review of ferroelectric domain imaging by piezoresponse force microscopy, In Electrical and Electromechanical Phenomena at the Nanoscale, edited by S.V. Kalinin and A. Gruverman (Springer Science, 1, New York, 2007), p. 173.

    Google Scholar 

  72. T. Jungk, A. Hoffmann, and E. Soergel: Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy. Appl. Phys. Lett. 89, 163507 (2006).

    Article  CAS  Google Scholar 

  73. S. Guo, O.S. Ovchinnikov, M.E. Curtis, M.B. Johnson, S. Jesse, and S.V. Kalinin: Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films. J. Appl. Phys. 108, 084103 (2010).

    Article  CAS  Google Scholar 

  74. S. Jesse and S.V. Kalinin: Band excitation in scanning probe microscopy: sines of change. J. Phys. D: Appl. Phys. 44, 464006 (2011).

    Article  CAS  Google Scholar 

  75. R. Proksch and S.V. Kalinin: Energy dissipation measurements in frequency-modulated scanning probe microscopy. Nanotechnology 21, 455705 (2010).

    Article  CAS  Google Scholar 

  76. S. Jesse, S. Guo, A. Kumar, B.J. Rodriguez, R. Proksch, and S.V. Kalinin: Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy. Nanotechnology 21, 405703 (2010).

    Article  CAS  Google Scholar 

  77. A.B. Kos and D.C. Hurley: Nanomechanical mapping with resonance tracking scanned probe microscope. Meas. Sci. Technol. 19, 015504 (2008).

    Article  CAS  Google Scholar 

  78. J.R. Brian, C. Clint, V.K. Sergei, and P. Roger: Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504 (2007).

    Article  CAS  Google Scholar 

  79. S. Jesse, S.V. Kalinin, R. Proksch, A.P. Baddorf, and B.J. Rodriguez: The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18, 435503 (2007).

    Article  Google Scholar 

  80. S. Jesse, A. Kumar, S.V. Kalinin, A. Gannepali, and R. Proksch: Band excitation scanning probe microscopies. Microsc. Today 18, 34 (2010).

    Article  Google Scholar 

  81. Y. Kim, A. Kumar, A. Tselev, I.I. Kravchenko, H. Han, I. Vrejoiu, W. Lee, D. Hesse, M. Alexe, S.V. Kalinin, and S. Jesse: Nonlinear phenomena in multiferroic nanocapacitors: Joule heating and electromechanical effects. ACS Nano 5, 9104 (2011).

    Article  CAS  Google Scholar 

  82. S. Jesse, B. Mirman, and S.V. Kalinin: Resonance enhancement in piezoresponse force microscopy: mapping electromechanical activity, contact stiffness, and Q factor. Appl. Phys. Lett. 89, 022906 (2006).

    Article  CAS  Google Scholar 

  83. S.V. Kalinin, S. Jesse, and R. Proksch: Information acquisition and processing in scanning probe microscopy. R&D Mag. 50, 20 (2008).

    Google Scholar 

  84. S. Jesse and S.V. Kalinin: Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy. Nanotechnology 20, 085714 (2009).

    Article  CAS  Google Scholar 

  85. M. Nikiforov, V. Reukov, G. Thompson, A. Vertegel, S. Guo, S. Kalinin, and S. Jesse: Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response. Nanotechnology 20, 405708 (2009).

    Article  CAS  Google Scholar 

  86. M. Nikiforov, G. Thompson, V. Reukov, S. Jesse, S. Guo, B. Rodriguez, K. Seal, A. Vertegel, and S. Kalinin: Double-layer mediated electromechanical response of amyloid fibrils in liquid environment. ACS Nano 4, 689 (2010).

    Article  CAS  Google Scholar 

  87. S. Jesse, S. Guo, A. Kumar, B. Rodriguez, R. Proksch, and S.V. Kalinin: Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy. Nanotechnology 21, 405703 (2010).

    Article  CAS  Google Scholar 

  88. S. Jesse, A.P. Baddorf, and S.V. Kalinin: Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 88, 062908 (2006).

    Article  CAS  Google Scholar 

  89. S. Jesse, H.N. Lee, and S.V. Kalinin: Quantitative mapping of switching behavior in piezoresponse force microscopy. Rev. Sci. Instrum. 77, 073702 (2006).

    Article  CAS  Google Scholar 

  90. B.J. Rodriguez, S. Jesse, A.P. Baddorf, T. Zhao, Y.H. Chu, R. Ramesh, E.A. Eliseev, A.N. Morozovska, and S.V. Kalinin: Spatially resolved mapping of ferroelectric switching behavior in self-assembled multiferroic nanostructures: strain, size, and interface effects. Nanotechnology 18, 405701 (2007).

    Article  CAS  Google Scholar 

  91. S. Jesse, B.J. Rodriguez, S. Choudhury, A.P. Baddorf, I. Vrejoiu, D. Hesse, M. Alexe, E.A. Eliseev, A.N. Morozovska, J. Zhang, L.-Q. Chen, and S.V. Kalinin: Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nat. Mater. 7, 209 (2008).

    Article  CAS  Google Scholar 

  92. Z. Tan, A.L. Roytburd, I. Levin, K. Seal, B.J. Rodriguez, S. Jesse, S. Kalinin, and A. Baddorf: Piezoelectric response of nanoscale PbTiO3 in composite PbTiO3–CoFe2O4 epitaxial films. Appl. Phys. Lett. 93, 074101 (2008).

    Article  CAS  Google Scholar 

  93. P. Bintachitt, S. Trolier-McKinstry, K. Seal, S. Jesse, and S.V. Kalinin: Switching spectroscopy piezoresponse force microscopy of polycrystalline capacitor structures. Appl. Phys. Lett. 94, 042906 (2009).

    Article  CAS  Google Scholar 

  94. B.J. Rodriguez, S. Choudhary, Y.H. Chu, A. Bhattacharyya, S. Jesse, K. Seal, A.P. Baddorf, R. Ramesh, L.-Q. Chen, and S.V. Kalinin: Unraveling deterministic mesoscopic polarization switching mechanisms: spatially resolved studies of a tilt grain boundary in Bismuth ferrite. Adv. Funct. Mater. 19, 2053 (2009).

    Article  CAS  Google Scholar 

  95. K. Seal, S. Jesse, M. Nikiforov, S.V. Kalinin, I. Fujii, P. Bintachitt, and S. Trolier-McKinstry: Spatially resolved spectroscopic mapping of polarization reversal in polycrystalline ferroelectric films: crossing the resolution barrier. Phys. Rev. Lett. 103, 57601 (2009).

    Article  CAS  Google Scholar 

  96. S. Wicks, K. Seal, S. Jesse, V. Anbusathaiah, S. Leach, R. Edwin Garcia, S.V. Kalinin, and V. Nagarajan: Collective dynamics in nanostructured polycrystalline ferroelectric thin films using local time-resolved measurements and switching spectroscopy. Acta Mater. 58, 67 (2010).

    Article  CAS  Google Scholar 

  97. B.J. Rodriguez, S. Jesse, A.A. Bokov, Z.G. Ye, and S.V. Kalinin: Mapping bias-induced phase stability and random fields in relaxor ferroelectrics. Appl. Phys. Lett. 95, 092904 (2009).

    Article  CAS  Google Scholar 

  98. B.J. Rodriguez, S. Jesse, A.N. Morozovska, S.V. Svechnikov, D.A. Kiselev, A.L. Kholkin, A.A. Bokov, Z.G. Ye, and S.V. Kalinin: Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3–PbTiO3 solid solutions. J. Appl. Phys. 108, 042006 (2010).

    Article  CAS  Google Scholar 

  99. B.J. Rodriguez, S. Jesse, J. Kim, S. Ducharme, and S.V. Kalinin: Local probing of relaxation time distributions in ferroelectric polymer nanomesas: time-resolved piezoresponse force spectroscopy and spectroscopic imaging. Appl. Phys. Lett. 92, 232903 (2008).

    Article  CAS  Google Scholar 

  100. S.V. Kalinin, B.J. Rodriguez, S. Jesse, A.N. Morozovska, A.A. Bokov, and Z.G. Ye: Spatial distribution of relaxation behavior on the surface of a ferroelectric relaxor in the ergodic phase. Appl. Phys. Lett. 95, 142902 (2009).

    Article  CAS  Google Scholar 

  101. S.V. Kalinin, B.J. Rodriguez, J.D. Budai, S. Jesse, A.N. Morozovska, A.A. Bokov, and Z.G. Ye: Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors. Phys. Rev. B 81, 064107 (2010).

    Article  CAS  Google Scholar 

  102. P. Bintachitt, S. Jesse, D. Damjanovic, Y. Han, I.M. Reaney, S. Trolier-McKinstry, and S.V. Kalinin: Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics. Proc. Natl. Acad. Sci. U.S.A. 107, 7219 (2010).

    Article  CAS  Google Scholar 

  103. F. Griggio, S. Jesse, A. Kumar, D.M. Marincel, D.S. Tinberg, S.V. Kalinin, and S. Trolier-McKinstry: Mapping piezoelectric nonlinearity in the Rayleigh regime using band excitation piezoresponse force microscopy. Appl. Phys. Lett. 98, 212901 (2011).

    Article  CAS  Google Scholar 

  104. S. Jesse, P. Maksymovych, and S.V. Kalinin: Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics. Appl. Phys. Lett. 93, 112903 (2008).

    Article  CAS  Google Scholar 

  105. P. Maksymovych, N. Balke, S. Jesse, M. Huijben, R. Ramesh, A.P. Baddorf, and S.V. Kalinin: Defect-induced asymmetry of local hysteresis loops on BiFeO3 surfaces. J. Mater. Sci. 44, 5095 (2009).

    Article  CAS  Google Scholar 

  106. V. Anbusathaiah, S. Jesse, M.A. Arredondo, F.C. Kartawidjaja, O.S. Ovchinnikov, J. Wang, S.V. Kalinin, and V. Nagarajan: Ferroelastic domain wall dynamics in ferroelectric bilayers. Acta Mater. 58, 5316 (2010).

    Article  CAS  Google Scholar 

  107. N. Balke, S. Jesse, A. Morozovska, E. Eliseev, D. Chung, R.E. Garcia, N.J. Dudney, and S.V. Kalinin: Nanometer-scale electrochemical intercalation and diffusion mapping of Li-ion battery materials. Nat. Nanotechnol. 5, 749 (2010).

    Article  CAS  Google Scholar 

  108. M.A. McLachlan, D.W. McComb, M.P. Ryan, A.N. Morozovska, E.A. Eliseev, E.A. Payzant, S. Jesse, K. Seal, A.P. Baddorf, and S.V. Kalinin: Probing local and global ferroelectric phase stability and polarization switching in ordered macroporous PZT. Adv. Funct. Mater. 21, 941 (2011).

    Article  CAS  Google Scholar 

  109. A. Kumar, O. Ovchinnikov, S. Guo, F. Griggio, S. Jesse, S. Trolier-McKinstry, and S.V. Kalinin: Spatially resolved mapping of disorder type and distribution in random systems using artificial neural network recognition. Phys. Rev. B 84, 024203 (2011).

    Article  CAS  Google Scholar 

  110. N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I.N. Ivanov, N.J. Dudney, and S.V. Kalinin: Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. Nano Lett. 10, 3420 (2010).

    Article  CAS  Google Scholar 

  111. S. Guo, S. Jesse, S. Kalnaus, N. Balke, C. Daniel, and S.V. Kalinin: Direct mapping of ion diffusion times on LiCoO2 surfaces with nanometer resolution. J. Electrochem. Soc. 158, A982 (2011).

    Article  CAS  Google Scholar 

  112. S. Jesse, N. Balke, E. Eliseev, A. Tselev, N.J. Dudney, A.N. Morozovska, and S.V. Kalinin: Direct mapping of ionic transport in a Si anode on the nanoscale: time domain electrochemical strain spectroscopy study. ACS Nano 5, 9682 (2011).

    Article  CAS  Google Scholar 

  113. O. Ovchinnikov, S. Jesse, S. Guo, K. Seal, P. Bintachitt, I. Fujii, S. Trolier-McKinstry, and S.V. Kalinin: Local measurements of Preisach density in polycrystalline ferroelectric capacitors using piezoresponse force spectroscopy. Appl. Phys. Lett. 96, 112906 (2010).

    Article  CAS  Google Scholar 

  114. N. Balke, S. Jesse, Y. Kim, L. Adamczyk, I.N. Ivanov, N.J. Dudney, and S.V. Kalinin: Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale. ACS Nano 4, 7349 (2010).

    Article  CAS  Google Scholar 

  115. R.K. Vasudevan, Y. Liu, J. Li, W.-I. Liang, A. Kumar, S. Jesse, Y.-C. Chen, Y.-H. Chu, V. Nagarajan, and S.V. Kalinin: Nanoscale control of phase variants in strain-engineered BiFeO3. Nano Lett. 11, 3346 (2011).

    Article  CAS  Google Scholar 

  116. T.M. Arruda, A. Kumar, S.V. Kalinin, and S. Jesse: Mapping irreversible electrochemical processes on the nanoscale: ionic phenomena in Li ion conductive glass ceramics. Nano Lett. 11, 4161 (2011).

    Article  CAS  Google Scholar 

  117. A. Kumar, O.S. Ovchinnikov, H. Funakubo, S. Jesse, and S.V. Kalinin: Real-space mapping of dynamic phenomena during hysteresis loop measurements: dynamic switching spectroscopy piezoresponse force microscopy. Appl. Phys. Lett. 98, 202903 (2011).

    Article  CAS  Google Scholar 

  118. A. Kumar, F. Ciucci, A.N. Morozovska, S.V. Kalinin, and S. Jesse: Measuring oxygen reduction/evolution reactions on the nanoscale. Nat. Chem. 3, 707 (2011).

    Article  CAS  Google Scholar 

  119. N. Balke, S. Choudhury, S. Jesse, M. Huijben, Y.H. Chu, A.P. Baddorf, L.Q. Chen, R. Ramesh, and S.V. Kalinin: Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotechnol. 4, 868 (2009).

    Article  CAS  Google Scholar 

  120. D. Damjanovic: Logarithmic frequency dependence of the piezoelectric effect due to pinning of ferroelectric–ferroelastic domain walls. Phys. Rev. B 55, R649 (1997).

    Article  CAS  Google Scholar 

  121. D. Damjanovic: Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J. Appl. Phys. 82, 1788 (1997).

    Article  CAS  Google Scholar 

  122. L. Néel: Theory of Rayleigh’s Laws of magnetization. Cahiers Phys. 12, 1 (1942).

    Google Scholar 

  123. H. Kronmüller: Statistical theory of Rayleigh’s Law. Physik 30, 9 (1970).

    Google Scholar 

  124. H. Kronmüller: Theory of Rayleigh’s Law in magnetically multiaxial and uniaxial crystals. J. Phys. Colloque C1 32, 390 (1971).

    Google Scholar 

  125. F. Preisach: On the magnetic after effects. Z. Phys. A Hadrons Nuclei 94, 277 (1935).

    Google Scholar 

  126. P. Ge and M. Jouaneh: Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Eng. 20, 99 (1997).

    Article  Google Scholar 

  127. Y. Kim, A. Kumar, O. Ovchinnikov, S. Jesse, H. Han, D. Pantel, I. Vrejoiu, W. Lee, D. Hesse, M. Alexe, and S.V. Kalinin: First-order reversal curve probing of spatially resolved polarization switching dynamics in ferroelectric nanocapacitors. ACS Nano 6, 491 (2011).

    Article  CAS  Google Scholar 

  128. H. Bouwmeester, H. Kruidhof, and A. Burggraaf: Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides. Solid State Ionics 72, 185 (1994).

    Article  CAS  Google Scholar 

  129. B.E. Vugmeister: Polarization dynamics and formation of polar nanoregions in relaxor ferroelectrics. Phys. Rev. B 73, 174117 (2006).

    Article  CAS  Google Scholar 

  130. S.V. Kalinin, S. Jesse, W. Liu, and A.A. Balandin: Evidence for possible flexoelectricity in tobacco mosaic viruses used as nanotemplates. Appl. Phys. Lett. 88, 153902 (2006).

    Article  CAS  Google Scholar 

  131. H. Lu, C.W. Bark, D. Esque de los Ojos, J. Alcala, C.B. Eom, G. Catalan, and A. Gruverman: Mechanical writing of ferroelectric polarization. Science 336, 59 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A portion of this research (A.K., Y.K., S.V.K., S.J.) was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. R.K.V. would like to acknowledge an overseas travel scholarship by the Australian Nanotechnology Network (ANN) and support from the ARC Discovery Project scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Vasudevan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasudevan, R.K., Jesse, S., Kim, Y. et al. Spectroscopic imaging in piezoresponse force microscopy: New opportunities for studying polarization dynamics in ferroelectrics and multiferroics. MRS Communications 2, 61–73 (2012). https://doi.org/10.1557/mrc.2012.15

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2012.15

Navigation