Skip to main content

Advertisement

Log in

Hydrolytic stability and biocompatibility on smooth muscle cells of polyethylene glycol–polycaprolactone-based polyurethanes

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Interactions between smooth muscle cells (SMCs) and biomaterials must not result in phenotype changes as this may generate uncontrolled multiplication processes and occlusions in vascular grafts. The aim of this study was to relate the hydrolytic stability and biocompatibility of polyurethanes (PUs) on SMCs. A higher polycaprolactone (PCL) concentration was found to improve the hydrolytic stability of the material and the adhesion of SMCs. A material with 5% polyethylene glycol, 90% PCL, and 5% pentaerythritol presented high cell viability and adhesion, suggesting a contractile phenotype in SMCs depending on the morphology. Nevertheless, all PUs retained their elastic modulus over 120 days, similar to the collagen of native arteries (~10 MPa). Furthermore, aortic SMCs did not present toxicity (viability over 80%) and demonstrated adherence without any abnormal cell multiplication processes, which is ideal for the function to be fulfiled in situ in the vascular grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
TABLE 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Similar content being viewed by others

References

  1. J. Wu, C. Hu, Z. Tang, Q. Yu, X. Liu, and H. Chen: Tissue-engineered vascular grafts: Balance of the four major requirements. Colloid Interface Sci. Commun. 23, 34 (2018).

    Article  CAS  Google Scholar 

  2. E. Benrashid, C.C. McCoy, L.M. Youngwirth, J. Kim, R.J. Manson, J.C. Otto, and J.H. Lawson: Tissue engineered vascular grafts: Origins, development, and current strategies for clinical application. Methods 99, 13 (2016).

    Article  CAS  Google Scholar 

  3. F. Xie, T. Zhang, P. Bryant, V. Kurusingal, J.M. Colwell, and B. Laycock: Degradation and stabilization of polyurethane elastomers. Prog. Polym. Sci. 90, 211 (2019).

    Article  CAS  Google Scholar 

  4. S. Lyu and D. Untereker: Degradability of polymers for implantable biomedical devices. Int. J. Mol. Sci. 10, 4033 (2009).

    Article  CAS  Google Scholar 

  5. H. Chen and G.S. Kassab: Microstructure-based biomechanics of coronary arteries in health and disease. J. Biomech. 49, 2548 (2016).

    Article  Google Scholar 

  6. A. Agrawal, B.H. Lee, S.A. Irvine, J. An, R. Bhuthalingam, V. Singh, K.Y. Low, C.K. Chua, and S.S. Venkatraman: Smooth muscle cell alignment and phenotype control by melt spun polycaprolactone fibers for seeding of tissue engineered blood vessels. Int. J. Biomater., 2015, 434876 (2015).

    Article  Google Scholar 

  7. H.-Y. Mi, X. Jing, B.S. Hagerty, G. Chen, A. Huang, and L.-S. Turng: Post-crosslinkable biodegradable thermoplastic polyurethanes: Synthesis, and thermal, mechanical, and degradation properties. Mater. Des. 127, 106 (2017).

    Article  CAS  Google Scholar 

  8. I. Adipurnama, M.C. Yang, T. Ciach, and B. Butruk-Raszeja: Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: A review. Biomater. Sci. 5, 22 (2017).

    Article  CAS  Google Scholar 

  9. P. Krsko and M. Libera: Hydrogels poly (ethylene glycol), or PEG, is used extensively in biomedical device. Mater. Today 8, 36 (2005).

    Article  CAS  Google Scholar 

  10. J. Horakova, P. Mikes, A. Saman, V. Jencova, A. Klapstova, T. Svarcova, M. Ackermann, V. Novotny, T. Suchy, and D. Lukas: The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Mater. Sci. Eng. C 92, 132 (2018).

    Article  CAS  Google Scholar 

  11. X. Jing, H.Y. Mi, M.R. Salick, T. Cordie, J. McNulty, X.F. Peng, and L.S. Turng: In vitro evaluations of electrospun nanofiber scaffolds composed of poly(ε-caprolactone) and polyethylenimine. J. Mater. Res. 30, 1808 (2015).

    Article  CAS  Google Scholar 

  12. Z. Peng, P. Zhou, F. Zhang, and X. Peng: Preparation and properties of polyurethane hydrogels based on hexamethylene diisocyanate/polycaprolactone-polyethylene glycol. J. Macromol. Sci., Part B: Phys. 57, 187 (2018).

    Article  CAS  Google Scholar 

  13. A.P. Tiwari, M.K. Joshi, J. Lee, B. Maharjan, S.W. Ko, C.H. Park, and C.S. Kim: Heterogeneous electrospun polycaprolactone/polyethylene glycol membranes with improved wettability, biocompatibility, and mineralization. Colloids Surf., A 520, 105 (2017).

    Article  CAS  Google Scholar 

  14. V. Kupka, L. Vojtova, Z. Fohlerova, and J. Jancar: Solvent free synthesis and structural evaluation of polyurethane films based on poly(ethylene glycol) and poly(caprolactone). Express Polym. Lett. 10, 479 (2016).

    Article  CAS  Google Scholar 

  15. C. Zhou, X. Zhou, and X. Su: Noncytotoxic polycaprolactone-polyethyleneglycol-ɛ-poly(l-lysine) triblock copolymer synthesized and self-assembled as an antibacterial drug carrier. RSC Adv. 7, 39718 (2017).

    Article  CAS  Google Scholar 

  16. Y. Niu, K.C. Chen, T. He, W. Yu, S. Huang, and K. Xu: Scaffolds from block polyurethanes based on poly(ε-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration. Biomaterials 35, 4266 (2014).

    Article  CAS  Google Scholar 

  17. F.O.V. da Cunha, D.H.R. Melo, V.B. Veronese, and M.M.C. Forte: Study of castor oil polyurethane–poly(methyl methacrylate) semi-interpenetrating polymer network (SIPN) reaction parameters using a 23 factorial experimental design. Mater. Res. 7, 539 (2004).

    Article  Google Scholar 

  18. A.P. Kotula, C.R. Snyder, and K.B. Migler: Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer 117, 1 (2017).

    Article  CAS  Google Scholar 

  19. A. Baranowska-Korczyc, A. Warowicka, M. Jasiurkowska-Delaporte, B. Grześkowiak, M. Jarek, B.M. Maciejewska, J. Jurga-Stopa, and S. Jurga: Antimicrobial electrospun poly(ε-caprolactone) scaffolds for gingival fibroblast growth. RSC Adv. 6, 19647 (2016).

    Article  CAS  Google Scholar 

  20. A. Wesełucha-Birczyńska, M. Świȩtek, E. Sołtysiak, P. Galiński, Ł. Płachta, K. Piekara, and M. Błazewicz: Raman spectroscopy and the material study of nanocomposite membranes from poly(ε-caprolactone) with biocompatibility testing in osteoblast-like cells. Analyst 140(7), 2311 (2015).

    Article  Google Scholar 

  21. S. Arévalo-Alquichire, M. Morales-Gonzalez, K. Navas-Gómez, L.E. Diaz, J.A. Gómez-Tejedor, M.A. Serrano, and M.F. Valero: Influence of polyol/crosslinker blend composition on phase separation and thermo-mechanical properties of polyurethane thin films. Polymers 12, 666 (2020).

    Article  Google Scholar 

  22. S. França de Sá, J.L. Ferreira, A.S. Matos, R. Macedo, and A.M. Ramos: A new insight into polyurethane foam deterioration–the use of Raman microscopy for the evaluation of long-term storage conditions. J. Raman Spectrosc. 47, 1494 (2016).

    Article  Google Scholar 

  23. Y.-C. Chung, T.K. Cho, and B.C. Chun: Flexible cross-linking by both pentaerythritol and polyethyleneglycol spacer and its impact on the mechanical properties and the shape memory effects of polyurethane. J. Appl. Polym. Sci. 112, 2800 (2009).

    Article  CAS  Google Scholar 

  24. L. Chen, C. Yan, and Z. Zheng: Functional polymer surfaces for controlling cell behaviors. Mater. Today 21, 38 (2018).

    Article  CAS  Google Scholar 

  25. Y. Yuan, and T.R. Lee: Bracco G., Holst B. Surf. Sci. Tech. (Springer, Berlin, Heidelberg, 2013), pp. 3–34.

    Book  Google Scholar 

  26. S. Asadpour, J. Ai, P. Davoudi, M. Ghorbani, M. Jalali Monfared, and H. Ghanbari: In vitro physical and biological characterization of biodegradable elastic polyurethane containing ferulic acid for small-caliber vascular grafts. Biomed. Mater. 13, 035007 (2018).

    Article  Google Scholar 

  27. X. Liu, Y. Xia, L. Liu, D. Zhang, and Z. Hou: Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces. J. Biomater. Appl. 32, 1329 (2018).

    Article  CAS  Google Scholar 

  28. Z. Hou, J. Xu, J. Teng, Q. Jia, and X. Wang: Facile preparation of medical segmented poly(ester-urethane) containing uniformly sized hard segments and phosphorylcholine groups for improved hemocompatibility. Mater. Sci. Eng. C 109, 110571 (2020).

    Article  CAS  Google Scholar 

  29. V. H. Huxley and S. S. Kemp: Sex-Specific Characteristics of the Microcirculation (2018).

    Book  Google Scholar 

  30. P.H. Blit, K.G. Battiston, M. Yang, J.P. Santerre, and K.A. Woodhouse: Electrospun elastin-like polypeptide enriched polyurethanes and their interactions with vascular smooth muscle cells. Acta Biomater. 8, 2493 (2012).

    Article  CAS  Google Scholar 

  31. F. Wolf, F. Vogt, T. Schmitz-Rode, S. Jockenhoevel, and P. Mela: Bioengineered vascular constructs as living models for in vitro cardiovascular research. Drug Discovery Today 21, 1446 (2016).

    Article  CAS  Google Scholar 

  32. A. Tijore, J.M. Behr, S.A. Irvine, V. Baisane, and S. Venkatraman: Bioprinted gelatin hydrogel platform promotes smooth muscle cell contractile phenotype maintenance. Biomed. Microdevices 20, 32 (2018).

    Article  Google Scholar 

  33. H.-I. Chang and Y. Wang: Cell response to surface and architecture of tissue engineering scaffolds. Regen. Med. Tissue Eng.–Cells Biomater. (2012), pp. 569–588.

    Google Scholar 

  34. J. Guan, M.S. Sacks, E.J. Beckman, and W.R. Wagner: Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: Synthesis, characterization and cytocompatibility. Biomaterials 25, 85 (2004).

    Article  CAS  Google Scholar 

  35. X. Le, G. Eddy, J. Poinern, N. Ali, C.M. Berry, and D. Fawcett: Engineering a biocompatible scaffold with either micrometre or nanometre scale surface topography for promoting protein adsorption and cellular response. Int. J. Biomater., 2013, 782549 (2013).

    Article  Google Scholar 

  36. T. Zehnder, T. Freund, M. Demir, R. Detsch, and A.R. Boccaccini: Fabrication of cell-loaded two-phase 3D constructs for tissue engineering. Materials 9, 887 (2016).

    Article  Google Scholar 

  37. M.E. Hoque, W.Y. San, F. Wei, S. Li, M.-H. Huang, M. Vert, and D.W. Hutmacher: Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Tissue Eng., Part A 15, 3013 (2009).

    Article  CAS  Google Scholar 

  38. Y.L. Uscátegui, L.E. Díaz, J.A. Gómez-Tejedor, A. Vallés-Lluch, G. Vilariño-Feltrer, M.A. Serrano, and M.F. Valero: Candidate polyurethanes based on castor oil (ricinus communis), with polycaprolactone diol and chitosan additions, for use in biomedical applications. Molecules 24, 237 (2019).

    Article  Google Scholar 

  39. Y.L. Uscátegui, S.J. Arévalo-Alquichire, J.A. Gómez-Tejedor, A. Vallés-Lluch, L.E. Díaz, and M.F. Valero: Polyurethane-based bioadhesive synthesized from polyols derived from castor oil (Ricinus communis) and low concentration of chitosan. J. Mater. Res. 32, 3699 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

The research and publication were supported by the Universidad de La Sabana (ING-205-2018) and the Minister of Science, Technology, and Innovation of the Republic of Colombia, MINCIENCAS (Contract number 80740-186-2019). M. M-G. would like to thank the Universidad de La Sabana for the scholarship for her master's studies. S. A-A. would like to thank MINCIENCIAS for the doctoral training scholarship (Grant 727-2015). The authors are thankful to Professor Ericsson Coy Barrera and his staff at Nueva Granada Military University for the access to the Varioskan™ LUX multimode microplate reader. J. A. S. acknowledges the financial support by MINECO through FIS2017-83295-P, MAT2015-71070-REDC, MAT2016-75586-C4-1/2/3-P and the Ramon y Cajal Fellowship (RYC-2015-17482). CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Valero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Gonzalez, M., Arévalo-Alquichire, S., Diaz, L.E. et al. Hydrolytic stability and biocompatibility on smooth muscle cells of polyethylene glycol–polycaprolactone-based polyurethanes. Journal of Materials Research 35, 3276–3285 (2020). https://doi.org/10.1557/jmr.2020.303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.303

Navigation