Skip to main content
Log in

Effect of oxidation on thermal fatigue behavior of cast tungsten carbide particle/steel substrate surface composite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Cast tungsten carbide is widely used to reinforce iron or steel substrate surface composites to meet the demands of harsh wear environments due to its extremely high hardness and excellent wettability with molten steel. Cast tungsten carbide particle/steel matrix surface composites have demonstrated great potential development in applications under the abrasive working condition. The thermal shock test was used to investigate the fatigue behavior of the composites fabricated by vacuum evaporative pattern casting technique at different temperatures. At elevated temperatures, the fatigue behavior of the composites was influenced by the oxidation of tungsten carbide, producing WO3. Thermodynamic calculations showed that the W2C in the tungsten carbide particle was oxidized at an initial temperature of approximately 570 °C. The relationship between oxidation and thermal fatigue crack growth was investigated, and the results suggested that oxidation would become more significant with increasing thermal shock temperature. These findings provide a valuable guide for understanding and designing particle/steel substrate surface composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:

Similar content being viewed by others

References

  1. D. Lou, J. Hellman, D. Luhulima, J. Liimatainen, and V.K. Lindroos: Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites. Mater. Sci. Eng., A 340, 155 (2003).

    Article  Google Scholar 

  2. L. Sun, T.e. Yang, C. Jia, and J. Xiong: VC, Cr3C2 doped ultrafine WC–Co cemented carbides prepared by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 29, 147 (2011).

    Article  CAS  Google Scholar 

  3. S.W. Huang, M. Samandi, and M. Brandt: Abrasive wear performance and microstructure of laser clad WC/Ni layers. Wear 256, 1095 (2004).

    Article  CAS  Google Scholar 

  4. A.M. Do Nascimento, V. Ocelík, M.C.F. Ierardi, and J.T.M. De Hosson: Wear resistance of WCp/duplex stainless steel metal matrix composite layers prepared by laser melt injection. Surf. Coat. Technol. 202, 4758 (2008).

    Article  Google Scholar 

  5. H. Rong, Z. Peng, X. Ren, C. Wang, Z. Fu, L. Qi, and H. Miao: Microstructure and mechanical properties of ultrafine WC–Ni–VC–TaC–cBN cemented carbides fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 29, 733 (2011).

    Article  CAS  Google Scholar 

  6. D. Liu, L. Li, F. Li, and Y. Chen: WCp/Fe metal matrix composites produced by laser melt injection. Surf. Coat. Technol. 202, 1771 (2008).

    Article  CAS  Google Scholar 

  7. L. Niu, M. Hojamberdiev, and Y. Xu: Preparation of in situ-formed WC/Fe composite on gray cast iron substrate by a centrifugal casting process. J. Mater. Process. Technol. 210, 1986 (2010).

    Article  CAS  Google Scholar 

  8. Z. Li, Y. Jiang, R. Zhou, Z. Chen, Q. Shan, and J. Tan: Effect of Cr addition on the microstructure and abrasive wear resistance of WC-reinforced iron matrix surface composites. J. Mater. Res. 29, 778 (2014).

    Article  CAS  Google Scholar 

  9. Z. Li, Y. Jiang, R. Zhou, D. Lu, and R. Zhou: Dry three-body abrasive wear behavior of WC reinforced iron matrix surface composites produced by V-EPC infiltration casting process. Wear 262, 649 (2007).

    Article  CAS  Google Scholar 

  10. Y. Sahin and M. Acılar: Production and properties of SiCp-reinforced aluminium alloy composites. Composites, Part A 34, 709 (2003).

    Article  Google Scholar 

  11. K.M. Sree Manu, L. Ajay Raag, T.P.D. Rajan, M. Gupta, and B.C. Pai: Liquid metal infiltration processing of metallic composites: A critical review. Metall. Mater. Trans. B 47, 2799 (2016).

    Article  CAS  Google Scholar 

  12. T.M. Cornsweet: Advanced composite materials. Science 168, 433 (1970).

    Article  CAS  Google Scholar 

  13. Q.L. Dai, B.B. Sun, M.L. Sui, G. He, Y. Li, J. Eckert, W.K. Luo, and E. Ma: High-performance bulk Ti–Cu–Ni–Sn–Ta nanocomposites based on a dendrite-eutectic microstructure. J. Mater. Res. 19, 2557 (2011).

    Article  Google Scholar 

  14. F.F. Wu, Z.F. Zhang, A. Peker, S.X. Mao, J. Das, and J. Eckert: Strength asymmetry of ductile dendrites reinforced Zr- and Ti-based composites. J. Mater. Res. 21, 2331 (2011).

    Article  Google Scholar 

  15. Z. Li, P. Wang, Q. Shan, Y. Jiang, H. Wei, and J. Tan: The particle shape of WC governing the fracture mechanism of particle reinforced iron matrix composites. Materials 11, 984 (2018).

    Article  Google Scholar 

  16. K. Dash, S. Sukumaran, and B.C. Ray: The behaviour of aluminium matrix composites under thermal stresses. Sci. Eng. Compos. Mater. 23, 1 (2016).

    Article  CAS  Google Scholar 

  17. A.J. Knowles, X. Jiang, M. Galano, and F. Audebert: Microstructure and mechanical properties of 6061 Al alloy based composites with SiC nanoparticles. J. Alloys Compd. 615, S401 (2014).

    Article  CAS  Google Scholar 

  18. A. Mazahery and M.O. Shabani: Development of the principle of simulated natural evolution in searching for a more superior solution: Proper selection of processing parameters in AMCs. Powder Technol. 245, 146 (2013).

    Article  CAS  Google Scholar 

  19. E. Ghorbel: Interface degradation in metal-matrix composites under cyclic thermo-mechanical loading. Compos. Sci. Technol. 57, 1045 (1997).

    Article  CAS  Google Scholar 

  20. C. Liu, L. Cheng, X. Luan, and H. Mei: High-temperature fatigue behavior of SiC-coated carbon/carbon composites in oxidizing atmosphere. J. Eur. Ceram. Soc. 29, 481 (2009).

    Article  CAS  Google Scholar 

  21. O. Sbaizero and G. Pezzotti: Influence of molybdenum particles on thermal shock resistance of alumina matrix ceramics. Mater. Sci. Eng., A 343, 273 (2003).

    Article  Google Scholar 

  22. Z.H. Jin and R.C. Batra: Thermal shock cracking in a metal-particle-reinforced ceramic matrix composite. Eng. Fract. Mech. 62, 339 (1999).

    Article  Google Scholar 

  23. Y.M. Aldridge and J.A. Yeomans: The thermal shock behaviour of ductile particle toughened alumina composites. J. Eur. Ceram. Soc. 19, 1769 (1998).

    Article  Google Scholar 

  24. H. Kou, W. Li, X. Zhang, J. Shao, X. Zhang, P. Geng, Y. Deng, and J. Ma: Effects of mechanical shock on thermal shock behavior of ceramics in quenching experiments. Ceram. Int. 43, 1584 (2017).

    Article  CAS  Google Scholar 

  25. Z. Li, J. Liu, H. Du, S. Li, and P. Zhang: Thermal shock resistance of dense zirconia matrix composites evaluated by indentation techniques. Mater. Sci. Eng., A 517, 154 (2009).

    Article  Google Scholar 

  26. T. Gumula, A. Rudawski, J. Michalowski, and S. Blazewicz: Fatigue behavior and oxidation resistance of carbon/ceramic composites reinforced with continuous carbon fibers. Ceram. Int. 41, 7381 (2015).

    Article  CAS  Google Scholar 

  27. S.N. Basu and V.K. Sarin: Oxidation behavior of WC–Co. Mater. Sci. Eng., A 209, 206 (1996).

    Article  Google Scholar 

  28. X.R.B. Casas, M. Anglada, J.M. Salla, and L. Llanes: Oxidation-induced strength degradation of WC–Co hardmetals. Int. J. Refract. Met. Hard Mater. 19, 303 (2001).

    Article  CAS  Google Scholar 

  29. W-H. Gu, Y.S. Jeong, K. Kim, J-C. Kim, S-H. Son, and S. Kim: Thermal oxidation behavior of WC–Co hard metal machining tool tip scraps. J. Mater. Process. Technol. 212, 1250 (2012).

    Article  CAS  Google Scholar 

  30. L. del Campo, R.B. Pérez-Sáez, L. González-Fernández, and M.J. Tello: Kinetics inversion in isothermal oxidation of uncoated WC-based carbides between 450 and 800 °C. Corros. Sci. 51, 707 (2009).

    Article  Google Scholar 

  31. V.B. Voitovich, V.V. Sverdel, R.F. Voitovich, and E.I. Golovko: Oxidation of WC–Co, WC–Ni, and WC–Co–Ni hard metals in the temperature range 500–800 °C. Int. J. Refract. Met. Hard Mater. 14, 289 (1996).

    Article  CAS  Google Scholar 

  32. S.K. Bhaumik, R. Balasubramaniam, G.S. Upadhyaya, and M.L. Vaidya: Oxidation behaviour of hard and binder phase modified WC–10Co cemented carbides. J. Mater. Sci. Lett. 11, 1457 (1992).

    Article  CAS  Google Scholar 

  33. H. Karimi, M. Hadi, I. Ebrahimzadeh, M.R. Farhang, and M. Sadeghi: High-temperature oxidation behaviour of WC–FeAl composite fabricated by spark plasma sintering. Ceram. Int. 44, 17147 (2018).

    Article  CAS  Google Scholar 

  34. S-J. Wang, C-H. Chen, R-M. Ko, Y-C. Kuo, C-H. Wong, C-H. Wu, K-M. Uang, T-M. Chen, and B-W. Liou: Preparation of tungsten oxide nanowires from sputter-deposited WCx films using an annealing/oxidation process. Appl. Phys. Lett. 86, 263103 (2005).

    Article  Google Scholar 

  35. Y. Liang and M. Che: Inorganic Chemical Materials Thermodynamic Data Manual, 1st ed. (Northeast University Press, Shenyang, China, 1993); pp. 88, 419.

    Google Scholar 

  36. W-T. Chen, C.H. Meredith, E.C. Dickey, and R. Trice: Growth and microstructure-dependent hardness of directionally solidified WC–W2C eutectoid ceramics. J. Am. Ceram. Soc. 98, 2191 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (51871116, 51501079, and 51561018). The experiments were designed by Zulai Li, Lei zhang, and Quan Shan, and performed by Yehua Jiang. The composites were fabricated by Zaifeng Zhou and Quan Shan. The oxidation tests were performed by Fan Gao. The manuscript was written by Quan Shan, Zulai Li, and Lei Zhang. Zulai Li and Lei Zhang are the corresponding authors of this research article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan Shan, Zulai Li or Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, Q., Zhou, Z., Li, Z. et al. Effect of oxidation on thermal fatigue behavior of cast tungsten carbide particle/steel substrate surface composite. Journal of Materials Research 34, 1754–1761 (2019). https://doi.org/10.1557/jmr.2019.83

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.83

Navigation